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Preface and Summary

This Thesis is based mainly on the results of the timing analysis applied to the

gamma-ray pulsars observed principally by theAGILE satellite and also extended,

in some cases, to observations with theFermi-LAT satellite and theMAGIC

Cherenkov telescope. Aim of this extended study of pulsars at the high energies

was to characterize their properties based, now, on a more statistically relevant

sample, and be able to disentangle useful informations that can be key to explain

the emission mechanisms in pulsars.

THE SCIENTIFIC CONTEXT Pulsars are highly-magnetized, rapidly-rotating

neutron stars. As explained inChapter 1, they have been observed in the radio

band over the past forty years, due to their highly anisotropic emission, which,

when combined with the misalignment between the rotation and the magnetic axis,

produces the pulsed emission we observed, also called the ”lighthouse effect”.

Pulsars have been observed as gamma-ray emitters as well, but it is only in the

past three years that their number hit the double digits and they started to yield

their potential as keys to explain the neutron stars mechanisms.

In Chapter 1, the basics of pulsar theory are given. While the

phenomenological aspects have been widely studied thanks to extensive radio

observations through the years, their electrodynamics represents an articulated

field that is difficult to probe. The ”classical” models of magnetosphere predict

the presence of regions of particles’ under-density (a ”gap”), inside an overall

force-free magnetized area that surrounds the pulsar, where the particles can be

accelerated and can produce the observed radiation, after a number of cascade

processes. More ”modern” models of magnetosphere, with their roots in old

predictions, discuss the hypothesis of a totally force-free magnetosphere. The

discussed theories search for a confirmation in our gamma-ray observations, as the

gamma-rays are the ones carrying away a good fraction of the rotational energy

loss.

i



THE NEW PERSPECTIVES OPENED BY THE MULTI-BAND OBSERVATIONS

In April 2007 the Italian Space Agency launched theAGILE satellite for gamma-ray

astronomy. About one year later,AGILE was joined in the observation of gamma-

rays by the 16 times biggerFermi-LAT satellite launched by NASA.AGILE and

Fermi-LAT, with their wide field of view and large collective area, are particularly

suited for the study of pulsars at high energies. Most recently, the window of very-

high energy observations has opened up to pulsar studies and, in particular, by the

MAGIC telescope, with the lowest up to now threshold for ground-based telescopes,

at 25 GeV. Its observations are briefly described, together withAGILE andFermi-

LAT’s, inChapter 2.

The techniques for studying pulsars in the gamma-rays are also explained in

Chapter 2, with the fundamental premise about the radio observations which were

part of my analysis work, as they constitute the primary basis for the gamma-

ray observations. The advances with respect to the observations of the previous

generation gamma-ray instruments are highlighted. In particular,AGILE was able

to take into account, for the first time in gamma-ray observations, the timing noise

that affects young pulsars. In this way, the observations can be carried out for

longer time spans without being affected by sensible light curve smearing. Thus, we

could take advantage of the long time span, up to now the longest for gamma-ray

observations, to increase the resolution of our light curves and see structures at the

sub-millisecond level.

GAMMA-RAY PULSARS AGILE and Fermi-LAT pulsar observations first

concentrated on the known gamma-ray pulsars. As shown inChapter 3, the

apparently ”familiar” pulsars actually hid thriving new prospects for pulsar

studies, as well as the new pulsars subsequently detected, described inChapter

4.

In these two Chapters, the properties of the gamma-ray emission ars analyzed

for a number of pulsars, mainly usingAGILE data, but also withFermi-LAT

and MAGIC observations. The light curves are investigated with increased

resolution from previous observations and the spectral properties are addressed.

The availability of a statistically significant sample of gamma-ray pulsars led us to

draw some lines on the models. The classical polar cap model seems to be failing

the test of gamma-ray observations for most of the present sample, and a simple

explanation of which can be found in conservation laws arguments discussed in
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Chapter 4. At the same time it starts getting clear that a model that contemplates a

single gap zone does not seem to be feasible to explain the observed pulse profiles.

And, possibly, the entire gap theory should be combined with the more physical

force-free models.

Episodes of variability in pulsars have been observed and studied in this

context. The Vela glitch of August 2007 was observed byAGILE in search for

gamma-ray emission. The Crab pulsar could have a contribution to the emission

from a newly observed third pulsar peak, that is less significant and much weaker

than the canonical two, and could be due to giant pulses.AGILE observed the first

gamma-ray millisecond pulsar but its emission only appeared in a restricted time

interval, leading to the interesting possibility that pulsar emission might have some

intrinsic variability.

HIGH MAGNETIC FIELD PULSARS After the advent ofFermi-LAT, AGILE

found its collocation in the gamma-ray astronomy in the characterization of the

low-energy gamma-rays (from 30 to 100 MeV), where the collective areas of the

two instruments is equivalent, butAGILE deals with much lower background. For

this reason, we concentrated on those pulsars that show a low-energy cutoff, which

were theorized to emit gamma-ray radiation through the exotic QED process of

photon splitting.

A detailed analysis of the two most significant cases is given inChapter 5. We

have found that the concurrence of a high magnetic field and an aligned geometry,

could overcome the objections fromChapter 4 against inner magnetosphere

emission and be, indeed, dominated by polar cap emission. Interestingly, this

phenomenology, that is observed in pulsars that are similar to magnetars, may be

observed in objects that are transitioning from pulsar to magnetar.

THE ENVIRONMENT OF PULSARS Young pulsars are known to power a

relativistic wind of particles that surrounds the pulsar and is best known as its

Pulsar Wind Nebula (PWN). Important phenomena take place in the PWN and they

are powered by the pulsar inside it. As discussed in Chapter 6, very high energy

emission was already observed from PWN, but high energy emission was missing,

in a spectral region where important constraints on the emission processes could be

given.

AGILE was the first satellite to detect GeV emission from a PWN apart from

Crab, Vela X, and it was also the first to claim the unexpected flux variation in the
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Crab Nebula which underwent two intense flares in 2010 and 2011. InChapter 6 we

give a description of the events and a possible trail for an interpretation, although

no clear picture can yet emerge from the observed events.

CONCLUSIONS AND FUTURE PROSPECTS The multi-band approach that has

been used for the observations described in this Thesis has proven valid for the

exploitation of new science and the most useful approach for the comprehensive

analysis of pulsar phenomena across the electromagnetic spectrum. As a

completion to this work, the more comprehensiveAGILE Pulsar Catalog is in

preparation. It will comprise all the pulsars observed byAGILE and particularly

focus on the low-energy tail of them, which present interesting properties that bridge

pulsars and magnetars.
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Chapter 1

An Introduction to Pulsars

Pulsars and their environments are the topic of this Thesis. Here a brief introduction

on pulsars, their origin, their evolution and the attempts at modeling their emission,

is given.

1.1 Pulsars

Pulsars, discovered in 1967 by Anthony Hewish and his student Jocelyn Bell [101],

are neutron stars which spin very rapidly around their axes (0.0012< Prot < 12sec)

and have a high surface magnetic field (108 < Bs < 1015 G). The misalignment

between the rotation axis and the magnetic one is at the origin of the observed

pulsation.

A neutron star is the residual nucleus of the explosion of a massive star

of at least8− 10 M¯. Neutron stars have typical radii of the order of 10 km

and masses around 1.4 M̄. Their internal structure is still mostly unknown.

With densities which reach1014 g cm−3, after the collapse, it is believed that

the exterior is constituted by heavy elements’ nuclei, among which iron, while

the interior is predominantly made of neutrons which become superfluid in the

interior. Depending on star mass and rotational frequency, the matter in the core

regions of neutron stars may be compressed to densities that are up to an order

of magnitude greater than the density of ordinary atomic nuclei. This extreme

compression provides a high-pressure environment in which numerous subatomic

particle processes are likely to compete with each other. The neutron star equation

of state depends on the composition of the matter inside the star and it governs

global properties such as radius for a given mass. So far open, with a wide range of

cases, the issues of the interior of neutron stars and of their equation of state have

pulsars as their best probes.
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Figure 1.1 Representation of a pulsar and its closest environment, see text for details.
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1.1.1 Why Study Pulsars?

Pulsars are very interesting study objects on different levels. They are the most

extreme laboratories for the study of the physics of the matter at its highest densities

and in a regime of very high magnetic fields, that are not reproducible on Earth.

The property that makes pulsars unique and mostly interesting is the stability of

their rotation, especially when they are old and have been ”revived” by the transfer

of angular momentum by a low mass companion star in the process of dying (see

Section 1.1.4). In such cases, known as millisecond pulsars, the pulsars reach

periods of the order of one millisecond and their rotation is so stable that, in time,

they represent the stablest clocks even compared to the best atomic standards. These

pulsars have been used to perform the most precise tests of the theory relativity by

Albert Einstein, and are believed to be possible sources of gravitational waves as

well as ”detectors” that can be timed to find them, due to the extreme stability

of their rotation. The discovery of the gravitational waves would not only prove

Einstein right once again, but they would open new and completely unexplored

territories for the astrophysical studies.

I am member of the European Collaboration for the use of pulsars as a timing

array (EPTA) which dedicates its efforts and conjunct radio telescope time to the

detection of gravitational waves in the residuals of the pulsars observations (see

Section 2.2.2). This topic is very interesting but is lies outside the work presented

in this Thesis.

1.1.2 Birth of a Pulsar

When the core of a massive star collapses, the star radius is shrunk from 106 km

to around 10 km. This shrinking results in the increase of the rotational velocity

of the pulsar, for the conservation of the angular momentum:IiΩi = I f Ω f , where

I = mr2 is the angular momentum andΩ the angular velocity, whilei and f represent

the initial and final stage of the formation of the neutron star. At the same time

internal processes, whose nature is still unclear, make the surface magnetic field

become extremely high. Thus a newly born pulsar typically has rotational periods

P = Ω−1 ∼ 10 ms and magnetic fieldsB∼ 1011−12 G. Pulsars’ electrodynamics in

these conditions is quite complicated. A more detailed explanation will be presented

in Section 1.2; here the approximate theory of radiation from a magnetic dipole is

presented.

The high surface magnetic field of the pulsar creates a high electric field which
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in turn, given the high conductivity of the matter on the surface, brings to a charge

separation, as for Gauss’ law:

σ =
1

4π
(~∇ ·~E) =− 1

2πc
~Ω ·~B, (1.1)

whereσ is the internal charge surface density,~Ω is the angular rotation velocity

of the neutron star,~E and~B are the electric and magnetic fields on the surface of

the star. In an aligned rotator model (which is not the general case, but a valid

approximation) the magnetic and rotation axes are aligned so that, for equation

1.1, the positive charges will flow towards the magnetic equator and the negative

charges towards the poles. The high field strengthen the segregations and it is

capable to extract the charges from the poles and have them co-rotate around the

star, hooked to the magnetic field lines because of the extremely high conductivity

of the stellar matter and the plasma. Co-rotating with the charged particles, the field

lines are only closed until the co-rotation velocity is smaller than the speed of light

in vacuum (c). This establishes a characteristic radius, thelight cylinder radius,

which can be derived asRLC = c/Ω. Inside the light cylinder the field lines are

closed and they create a region of charged plasma around the neutron star, known

as itsmagnetosphere. Outside the light cylinder the field lines open and the particles

emit radiation in a collimated beam towards infinity.

The electrons, which are initially very energetic, move along and spiral around

the field lines and emit curvature and synchrotron radiation. Cascade processes,

which have not yet been fully understood (see Section 1.3.1) are responsible for

the energy loss in the radiation which leads to the coherent radio emission that is

observed, through subsequent steps of pair production and annihilation.

1.1.3 ThePṖ - Diagram and the Pulsars’ Evolution

Before the discovery of pulsars, [64] and then [166] proposed an emission

mechanism related to the energy loss from magnetic dipole emission, following

dE
dt

=
d
dt

(
1
2

IΩ2) =−2Ω4M 2sinα2

3c3 (1.2)

whereM = 1
2R3B is the magnetic dipole moment andB is the magnetic field at the

pole, for a uniformly magnetized sphere. If we explicitM andΩ = 2π/P, we get

PṖ =
8π2

3c3

B2R6sin2α
I

. (1.3)
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Figure 1.2 Evolutive diagram for pulsars, as a function of their rotational period and period
derivative. See text for details.
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Thus the pulsar loses energy through magnetic dipole emission and, in time, it spins

down. For the young pulsars, the period derivative is of the orderṖ∼ 10−13 ss−1.

No decay of the magnetic field strength is observed during a pulsar lifetime (around

108 yr, [93]).

The pulsar slow-down can be expressed in terms of the angular velocity as

Ω̇ = Ωn, wheren is thebraking indexand can be expressed as

n =
ΩΩ̈
Ω̇2

; (1.4)

n should equal 3 for a perfect dipole. The fact that the observed values range from

1.4 to 2.9 (with a very recent measurement down ton = 0.9 [72]), reflects the fact

that the pulsar is not placed in vacuo, that it is influenced by currents and winds,

and that the multipole components can play a relevant role. If we assume the dipole

approximation to still be valid to some extent, and consider the initial spin period

of a pulsar to be very small with respect to the actual period, an estimate of the

spin-down age can be obtained as

τ =
1

(n−1)
Ω
Ω̇

=
1

(n−1)
P

Ṗ
(1.5)

which is valid forn 6= 1 and in particular, in the magnetic dipole approximation, it

becomes

τ =
1
2

P

Ṗ
. (1.6)

τ is the so-called spin-down age, usually an upper limit to the real age of the pulsar.

From the spin-down law, a relationship can be drawn that links the magnetic field

at the surface of the pulsar to its period and period derivative:

BNS= (
3c3

8π2PṖINS)
1/2

1

R3
NSsinα

(1.7)

which becomes

B≈ 3.2·1019
√

PṖ G (1.8)

assuming typical parameter values for the neutron stars:I = 1045 g cm2, R= 10km

andsinα = 1.

One can, therefore, represent the evolution of a pulsar through aP−B diagram

(or the equivalentP− Ṗ). Figure 1.2 shows the diagram, where the iso-age lines for

pulsars are underlined. The young pulsars are located in the top left corner of the

diagram. Most of the observed pulsars are slower, but with magnetic fields similar

to those of the younger pulsars. We can highlight a region where no pulsars are
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observed: this is the so-calleddeath valley: there comes a time (around107−108 yr,

depending on the rotation period) when pulsars reach too low luminosities, below

the detection limits for present instruments: the emission mechanism is no longer

able to keep the pulsed radio emission active. It is assumed that a critical period

exists which determines the end of the pair production for the coherent radiation.

The fact that such a death line exists is due to the fact that the emission is coherent

and that it is originated by cascade processes [45].

1.1.4 Characteristics of Young and Old Pulsars

The young pulsars occupy the top left hand side of theP− Ṗ diagram because,

when they are born (see Section 1.1.2) they are characterized by very high rotation

frequency and surface magnetic field. In time both decrease because of the energy

losses (see Section 1.1.3). The sample of young pulsars is limited due to their short

lives (∼ 104− 105 yr). Young pulsars are characterized by the presence ofstar

quakes: aftershock settlements which indicate that the neutron star is progressively

relaxing in its inside.Glitchesare observationally associated to these phenomena:

sudden variations of the pulsars’ rotation period which are superimposed to the

secular spin-down. They are believed to be originated (see e.g. [191, 73] and

references therein) by a sudden change in the deformation of the stellar crust with

respect to a sphere. This change causes a variation of the moment of inertia which,

in turn, causes a variation of the spin frequency so that the angular momentum is

conserved. Observing a glitch, and its subsequent relaxation, makes it possible to

study the interior of a neutron star and the solid state physics in extreme conditions.

The observations point to a scenario where the external crust is solid while the

internal one is fluid.

A small (but increasing) number of pulsars occupies the bottom left region of

the diagram. These pulsars have periods of the order of milliseconds, magnetic

fields of the order108 G and a high characteristic age, close to the Hubble time

(τh ∼ 1010 yr). These properties imply that thesemillisecond pulsars(MSPs) must

have ended their lives but have then be ”reaccelerated” so as to move through the

death line towards the left and be observable again. The scenario that is nowadays

accepted to explain this phenomenon is calledrecycling (see e.g. [204]). Binary

systems where the companion star has a low mass go through a complete recycling

and are reaccelerated to very short periods∼ 1 ms. Systems with an intermediate

mass produce mildly recycled pulsars (∼ tens of ms). Systems with a massive
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Figure 1.3 A scheme of the variety and properties of the isolated neutron stars. The overall
classical distinction among the different classes is mainly based on the mechanism that
powers their emission: the rotational energy loss, the magnetic field decay or the cooling.
The rotation powered neutron stars are typically non variable, while the magnetic powered
are typically highly variable, but a superposition can be observed. In the center, the radio
behavior is highlighted, which does not show a definite correlation with the powering
mechanism. Credits P. Esposito

companion go through a more catastrophic evolution. The accretion is not stable

and it can be carried out by the wind of the main sequence star, if it is particularly

massive. The two stars can get attracted towards one another due to the strong

gravitational field; they are enclosed by a common envelope which can, in some

cases, collapse to give a single remaining compact object. The evolution is fast and

irregular and it terminates with a second supernova explosion. This is why it is so

rare to observe binary systems composed by two neutron stars or even two pulsars.

1.1.5 Beyond Pulsars: the Ever Increasing Zoo of Non-Pulsar NSs

The last decade has shown that the observational properties of neutron stars can

be remarkably diverse. The challenge is to establish an underlying physical theory

of neutron stars and their birth properties that can explain the great variety. Here
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a schematic presentation is given of the currently identified zoo of neutron stars.

We have up to now described pulsars traditionally identified as”radio pulsars”

but recently dubbed”rotation powered pulsars”to have a most observationally

accurate and precise definition: these objects are powered by their loss of rotational

energy due to braking by their magnetic field.”Millisecond pulsars”, though also

rotation powered, have different evolutionary histories, involving long lived binary

systems and a recycling episode which spun-up the neutron star and quenched its

magnetic field. One of the latest additions to the zoo, the”rotating radio transients”

(or RRATs), do not seem to produce observable periodic emission, the defining

property of the rotation powered pulsars, but unpredictable short bursts which occur

at integral multiples of an underlying periodicity.

The radio emission has initially been one of the fundamental characteristics

of the neutron stars. With the advent of new X-ray satellites, different subclasses

of generally radio-quiet neutron stars have emerged. The”isolated neutron stars”

present, as defining properties, quasi-thermal X-ray emission with relatively low

X-ray luminosity, great proximity, lack of a radio counterpart, relatively long

periodicities (P= 3−11s). ”Magnetars” have occasional huge outbursts of X-rays

and soft gamma-rays, and luminosities in quiescence that are orders of magnitude

greater than their spin-down luminosities. They are thought to be young, isolated

neutron stars powered by the decay of a large magnetic field. Finally, a handful of

“central compact objects”constitute an X-ray bright, likely heterogeneous, class:

their properties are not well defined yet; their name derives from their central

location in supernova remnants (SNRs). Figure 1.3 gives a schematic view of the

different types of isolated neutron stars, with a synthesis of the properties that unite

them and those that are responsible for the differences. The challenge of the past

decade has been to find a way to unify this variety into a coherent physical picture.

1.2 Pulsars’ Electrodynamics

Electrodynamics plays a fundamental role in pulsars and, in general, in those

sources which present an accretion disc and a linear and moderately collimated

jet of matter. The electrodynamics produces relativistic particles and is thus able

to explain the gamma-ray and charged-particles emission that is observed from

compact objects.
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1.2.1 The Oblique Rotator Mechanism

As stated in section 1.1.3, pulsars can lose energy due to the presence of a magnetic

dipole ~M , that is inclined with respect to the rotation axis with an angleα. To an

external observer this appears as a magnetic field varying in time and it implies an

energy loss due to the emission of electromagnetic radiation, following the equation

(Landau & Lifschitz, 1985)

Ė =− 2
3c2(M̈ )2, (1.9)

which, as seen in section 1.1.3, can be translated into equation 1.2. The source of

the missing energy is the rotational energy of the pulsar,E = IΩ2/2, so that, as

already seen,

Ė = IΩΩ̇, (1.10)

which implies a decrease of the rotational period of the pulsar with time.

The electromagnetic radiation ought to also be responsible for the angular

momentum loss, sinceIΩ̇ < 0 (see section 1.1.2) and we assume the star to be

located in vacuum. This very mechanism leads, in fact, to the conclusion that the

environment surrounding the pulsar is not empty, but it is the household of important

physical phenomena. If the pulsar rotates with angular velocityΩ, one would expect

that its entire luminosity should be irradiated at frequencyν = Ω
2π ,while we mainly

observe radio emission from pulsars, i.e. at frequencies of hundreds of MHz or

GHz. This means that electrons surround the pulsar, and they convert the energy,

which reaches us, as electromagnetic radiation of high amplitude and small period,

into kinetic energy that they themselves irradiate.

1.2.2 The Magnetosphere

A comprehensive model that can satisfactorily explain the complex phenomena

that take place in the magnetosphere of a pulsar is still to be developed. A basic

model can be proposed even from a strictly maxwellian point of view. The reason

why we speak aboutelectrodynamicsfor compact objects lies in the fact that the

electromagnetic forces that are present on the matter outside the object are much

higher than any other force.

Let us initially suppose that the magnetic field is purely dipolar and that the

rotator is aligned (see section 1.1.2). The particles can freely flow along the

field lines, while the motion in the direction perpendicular to the field is highly

hampered. The field lines can be considered as bare wires, as the particles are
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strongly connected to their field line and will follow it closely. This is only true

as long as the Larmor radius of the particle (rL = mvc/eB) is much smaller than

the distance from the compact object, while at great distances from the pulsar the

particles can migrate from one line to the other.

To prove that the medium around the pulsar is not empty, one can hypothesize

that it is and calculate the electric force acting on the surface charges. Since the

internal matter of a pulsar has high conductivity, the electrons inside it are disposed

in a way that the force acting on them, i.e. the Lorenz force, is null at equilibrium:

~E +
~v
c
∧~B = 0 (1.11)

where~v = ~Ω∧~r is the rotational velocity of the star. The equation shows that there

must be an electric field inside the pulsar and thus there has to be one outside as

well, because of the presence of surface charges on the pulsar. If we compare the

electric and gravitational forces,

eE‖
GMm/R2

p
' 8·1011 (1.12)

whereE‖ is the electric field component that is parallel to the magnetic field and

Rp is the neutron star radius at the pole, it is apparent that the gravitational force is

negligible with respect to the electrostatic one, for each electron. If a pulsar were

placed in vacuum, its surface fields would be so strong as to pull out the surface

charges and fill the vacuum.

As long as a non zero force is applied to the electric charges, they will be

extracted from (or created at) the surface of the pulsar. The stationary condition is

thus that the total force on the electric charges be null. In this case the total force

is the Lorenz force, having assumed that the gravitational force is negligible and

therefore considering the particles as massless:

ρ~E +
~j
c
∧~B = 0 (1.13)

whereρ is the charge density and~j is the current density. From this equation, it was

deduced the fundamental force-free condition (ref):

~E ·~B = 0, (1.14)

viz. null electric field in the direction of the magnetic field. Charges are produced

outside a pulsar in massive quantities, so as to cancel the sum of the magnetic force
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and electric, repulsive force, generated by the charges themselves. Moreover, the

charges are not static and they can generate other electric and magnetic fields that

should be taken into account when calculating the motion of the charges.

A simple argument leads to believe that the magnetospheric regime should be

of charge separation. If the gravitational forces are believed to be negligible with

respect to the electrostatic forces, a small electric field can be thought to compensate

for them. However, if this is true for the electric charges of one sign, then the

opposite should be true for the charges of opposite sign, whose field would add up

to the gravitational forces. In this framework, there would be nothing to prevent

the charges from falling onto the pulsar, except for pressure, requiring thermal

velocities of the orderv2
th ≈ GM/R, which, for the typical radius of a neutron star

(R∼ 10 km), implies a temperatureT ∼ 109 K. Such a high temperature is hard

to keep in the presence of high magnetic fields and would cause relevant radiative

losses.

1.2.3 The Goldreich-Julian Model

The model elaborated by Goldreich & Julian (1969) is the first attempt at explaining

the magnetosphere of a pulsar. It assumes charge separation. The light cylinder

(see section 1.1.2) separates an interior region where the charges rigidly co-rotate

with the star and magnetic lines are equipotential, from an exterior region where

the charges cannot co-rotate and the field lines cannot be equipotential. The lines

inside the light cylinder are closed and originate theco-rotating magnetosphere; the

others, which cross the light cylinder, do not close and acquire a toroidal component

(alongêφ ), which becomes dominant at large radii and produce a magnetic field that

decays asBφ ∝ 1
r for r → ∞, because of the infinite current.

In order to avoid the net loss of charge, the model assumes the presence of a

critical line (see figure 1.4), which leaves the pulsar’s surface with an angleθc and

whose potential equals the one at infinity. The particles atθ < θc (small latitudes)

will thus have negative potential with respect to the critical line, and vice versa for

those atθ > θc. Along the field lines close to the pole the negative charges will flow

to infinity, while the positive charges will flow from the lines close to the closed one.

The Goldreich-Julian model, albeit still approximate and not devoid of faults,

presents a fundamental result: the pulsar loses energy even in the case of perfect

alignment while in the Pacini model it requires the misalignment between the

magnetic and rotation axes (Ė ∝ sin2α). The only possible source of energy
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Figure 1.4 Representation of a pulsar magnetosphere, see text for details.

must be the rotational energy. And since the rotational energy is related to the

angular momentum loss, the same mechanism must also be able to dissipate angular

momentum.

1.3 Particle Acceleration: Modern Models of Magnetosphere

The Goldreich-Julian model, in its assumption of charge separation, predicts a

minimum density of the plasma co-rotating with the pulsar. Different radiation

mechanisms (see below) require a magnetospheric plasma density that largely

departs from the Goldreich-Julian density

ρe =− Ω ·B
2πc(1−Ω2r2

⊥/c2)
. (1.15)

A number of models predict the formation of these plasma excesses in virtue of

the presence ofgapsin the magnetosphere. In these regions the condition of co-

rotating magnetosphere is no more valid and the total force is not null, so that a

residual electric field is present:E‖. The regions where the gaps are expected are

the ones where there is plasma depletion. Two such regions have historically been

located: the one of open lines above the magnetic pole (polar capmodels) or the one

between the critical line and the last open or closed field line (outer gapmodels).

1.3.1 Low-altitude Models

The polar cap models [193] invoke the the presence of a gap in the polar region

to explain the energy emission from a pulsar. Thence a pair cascade originates:
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the charged particles are extracted from the star’s surface and accelerated from the

residual magnetic field up to relativistic energies (the particles reach Lorenz factors

γ<∼107). Moving along the magnetic field lines the particles produce gamma-ray

photons, by curvature radiation or inverse Compton with low-energy photons. In

a high magnetic field the photons can split and generate electron-positron pairs

(provided the energy of the photon exceeds the rest energy of electron plus positron:

E≥ 2mec2 = 1.02MeV). Yet again these particles, which are still highly energetic,

can produce a second photon cascade and then pairs; even a third cascade can

originate. The initial plasma density increases of a factor 10 up to104. It is this

secondary plasma (or the tertiary) that produces the radio pulsed emission. The

lessening or end of these processes is what causes the pulsar to pass thedeath line

(see section 1.1.3). The first generations of particles which are accelerated by the

open magnetosphere should be responsible for the high energy emission.

1.3.2 Rim Models

The polar cap model already encountered its initial problems when the first

sample of gamma-ray pulsars was observed in the Nineties. The model could

not easily explain how the sources could show both remarkable similarities

and puzzling variations in their light curves and phase-resolved energy spectra.

Inconsistencies further arose when comparing gamma-ray light curves to those from

other wavelengths. It was proposed that the continuous pair-creation above the top

of the acceleration zone would create a dense, approximately force-free, column of

pair plasma streaming away from the star. Different versions of these adaptations

have been proposed in time: space charge limited flow [23], pair starved [55], two-

pole caustic [69] and they seem to have overcome the classical polar cap models

problems.

These the classical polar cap model premises: the gamma-ray emission is

initiated by the acceleration of electrons from the surface of the star above the

pole and towards infinity via the open field lines; the emission is originated by

curvature radiation of the electrons along the open field lines; the pair conversion

by the magnetic field and the synchrotron radiation by the pairs produce photon-

pair cascades from which the observed gamma-radiation emerges. In order to

accommodate the discrepancies with the observations, to these were added the

requirement of an aligned geometry and that the acceleration of the electrons should

occur over an extended distance above the polar cap so that the peak energies are
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reached at heights of a few neutrons star radii. Additionally the surface density

should be concentrated near the polar cap rim.

1.3.3 Outer Magnetosphere Models

In these models the gaps are assumed to be in the external magnetosphere, near the

critical field line which spatially separates the charges of opposite signs. In this

region the particles which are removed are not replaced by new particles from the

surface of the pulsar [105] and therefore a large gap is formed between opposite

charged surfaces.

The actual form of this model has been developed by [47, 189]. It predicts

particle acceleration, high energy emission and pair production, in a lower magnetic

field than that that of the polar cap models. In general this model is used to explain

the high energy emission, not the radio one which, in some cases, was not predicted

by this model other than as an exception. The high energy emission is due to

synchrotron or curvature radiation with higher Lorenz factors, as the magnetic fields

are lower.

The recent discoveries of around 50 new gamma-ray pulsars by theFermi-

LAT satellite ([7], see Chapter 4), have led to an observational bias towards outer

magnetospheric emission. [227] realized an ”Atlas” of pulsars light curve shapes

based on the predictions of Polar Caps, Slot Gaps and Outer Gaps. If one compares

Fermi-LAT light curves with these theoretical predictions, they would find that the

emission seems to preferentially come from the outer gaps.

1.3.4 Other Models

Beside the two main streams, other models have been proposed to explain pulsar

emission, of which here a brief overview is given.

Annular Gaps This model [67] predicts the existence of two kinds of acceleration

regions, the core and the annular region. The critical field line divides the open field

lines region of the magnetosphere into two parts: one that contains the magnetic axis

(core), while the other one is calledannular region and is defined by the lines that

cross the null charge surface (see section 1.2.3). It is assumed that, for an oblique

rotator, the particles in the magnetosphere flow out through the light cylinder and

the returning currents are located in the annular region. It is also assumed that

the magnetospheric plasma is not completely charge separated. If this is true, the
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negative charges stripped off from the stellar surface would be naturally accelerated

in the annular region.

External Models They would solve the problem that classical polar cap and outer

gap models are not able to fit the polarization properties of the pulses. Two pole

caustic gap models do address and solve the problems but a different site for the

production of pulsed radiation has been investigated, based on the idea of striped

pulsar wind. It is assumed that the magnetic energy is released by reconnection

in the thin regions where the toroidal field reverses its polarity, producing a non-

thermal electron/positron population. Emission from the striped wind [119, 176]

originates outside the light cylinder and the phase coherence of the synchrotron

radiation is guaranteed by relativistic beaming effects. The advantage of this model

is that the geometry of the magnetic field, key property to determine the emission

and polarization, is here relatively well known.

Force Free Magnetosphere Not all authors agree on the fact that the magnetosphere

is non force-free (~J‖~B) somewhere. Since the dawn of pulsar theory, a

magnetosphere that is entirely force-free was predicted and modeled [49]. Most

recently a new model has been proposed to explain the observed gamma-ray light

curves in the framework of the force-free magnetosphere and it is theseparatrix

layer model by [30]. The high-energy emission originates from a thin layer on the

open field lines just inside the separatrix that bounds the open flux channel. The

emission from this layer generates two strong caustics which produce the typical

double-peaked light curve (see section 1.5).

1.4 Radio Pulsars

Pulsars have been discovered in the radio and mostly observed in this band for over

40 years. About 2000 radio pulsars are known today and a vast amount of their

science has been developed using the radio data. The typical spectrum of a radio

pulsar is

S∝ ν−α (1.16)

with 1 < α < 3 and a high degree of polarization (up to 90%).

A pulsar profile represents its signature: every radio pulsar has a different

characteristic profile. The profile can sometimes be multi-peaked, giving an

indication of the inclination of the emitting beam with respect to our line of sight.
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In a few cases it is possible to observe the two beams: in this case the two pulses

have a phase difference of180◦ between one another and the second pulse is called

interpulse. Two models have been proposed to explain the structure of the beam: the

core and conemodel [185], where the beam is constituted by a number of emission

cones that are concentrically superimposed; thepatchy beammodel [143] which

predicts the presence of different emission regions randomly disposed inside the

beam.

Timing (see Section 2.2) is a fundamental instrument to study pulsars because

it allows the retrieval of their parameters and, therefore, to use pulsars as a

base for many other studies. In particular, thanks to these measurements, it is

possible to derive informations on the interior of a neutron star and determine the

equation of state of the matter in extreme density conditions, to obtain very accurate

astrometrical measurements and, thanks to these, map the electron population of

the Galaxy; finally, the extremely precise radio pulsar measurements consent (and

have already consented) to test gravitational theories in regimes of strong field and

in particular the general relativity, which has already been proven right at 99.95%

level by pulsar observations (see [42, 142, 124] and Section 1.1.1).

1.5 A Snapshot of Gamma-ray Pulsars before 2007

A gamma-ray pulsar is one that emits pulsed radiation in the gamma-rays (> 30

MeV).

The Earth atmosphere screens the gamma-rays and it was not until the Sixties

with the first scientific missions on board balloons that the first observations were

performed at these wavelengths. The first telescope for the detection of gamma-rays

was launched in 1961 on board the satelliteExplorer-XI. This telescope collected

little more than one hundred photons, uniformly distributed on the galactic plane,

leading to the first hint of the presence of a gamma-ray background. Nowadays the

gamma-ray observations are also performed from Earth, using indirect detection

techniques: theČherenkovradiation produced inside the atmosphere from very

high energy gamma-rays (E ∼ Gev÷ TeV) can be detected from special optical

telescopes (see Section 2.3.4).

In the Seventies two very important satellites for the gamma-ray astronomy

were launched:SAS-2from NASA, which only lasted 8 months, but highlighted

the diffuse emission from the Galactic plane and detected with large statistics

two point sources: the Vela and Crab pulsars; andCOS-B, launched by ESA in
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1975 and lasted till 1982, which produced the first gamma-ray sources catalog,

comprising around 20 objects. A very fruitful gamma-ray mission before 2000

was theCompton Gamma-Ray Observatory(CGRO), a NASA mission launched in

1991 which lasted almost ten years. On boardCGROwas theEnergetic Gamma-

Ray Telescope(EGRET), observing at energies between 20 MeV and 30 GeV. It

produced an all-sky map of the diffuse emission from the gamma-rays produced in

the ISM of the Milky Way by the energetic cosmic rays and it also brought relevant

results in the pulsar field.

Before 2007 the ”classical” gamma-ray pulsars were Vela (B0833-45),

Geminga (J0633+1746), Crab (B0531+21), B1509-58 (see Chapter 6), B1706-44,

B1951+32 and B1055-52. The gamma-ray pulsars represent the brightest galactic

gamma-ray sources. Typically the gamma-ray pulsars are young (see section 1.1.4)

and energetic. Vela and Crab produce a very strong signal and emit in most of the

bands of the electromagnetic spectrum, which makes them the most studied pulsars

at present. The gamma-ray emission is usually highly pulsed, it is collimated and

non thermal in origin. Not all sources are bright enough to show the pulse profile

with the folding of photons through the ephemeris obtained from the radio timing

(see Section 2.5.1). When observable, the pulse is double-peaked, but it may vary

with growing energy, indicating that geometry plays an important role.

At the end of theEGRET mission, 170 sources had been detected but not

identified and most of them seemed to belong to the Milky Way. Due toEGRET’s

low angular resolution (∼ 1◦) with respect to a radio telescope, and the small

number of photons collected for each source, for most of them no counterpart

was found. Nonetheless, in some cases associations have been found with known

gamma-ray pulsars or, afterwards, with subsequently discovered new radio pulsars.

The main problem in the identification resides in the fact that usually more than a

pulsar (or source in general) can be fitted intoEGRETerror box.

The first unidentified gamma source [75] remained unidentified for almost 20

years before the X-ray satelliteROSATobserved a periodicity of 237 ms showing it

to be a pulsar [88]. The source was calledGemingaasGEMINi GAmma-ray source,

which in milanese dialect also meansthere is notbecause this was the first pulsar

not to be visible in the radio band but only at other wavelengths. Over 30 years of

observations of this source confirmed the peculiarity of this pulsar, in everything

else comparable to the other rotation-powered pulsars. The reasons of the non

visibility of the gamma-ray emission could be geometrical (because the radio beam
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sweeps a less wide cone than the gamma-ray one) or simply of weakness of the

gamma-ray emission. The question was whether Geminga was the only outlier.

Despite their very low values of period derivatives (Ṗ ∼ 10−20ss−1), the

MSPs have spin-down luminosities comparable with those of the young pulsars

Ė ∝ Ṗ/P3), due to their much smaller rotational period. Emission from these

sources was, therefore, also expected.

1.5.1 The Models’ Predictions

The possible processes for the non-thermal emission observed in optical, X- and

gamma-rays are: synchrotron, curvature emission, inverse Compton scattering. The

emission regions are the ones already identified: the polar caps or the external field

lines close to the light cylinder.

In the polar cap model the emission is due to inverse Compton with infrared

photons from the cascades of particles coming from the polar caps and directed

towards infinity. In this model the gamma-ray emission is cut off at high energies

because they are absorbed by the high magnetic field they travel across. In the outer

gap model the emission is a combination of curvature and synchrotron radiation

from couples which propagate downwards in the region close to the light cylinder.

In this case the spectrum can extend to higher energies.

1.5.2 Supporting Observational Evidences

The information available at theEGRET times could not discern between the

models and in particular the two main streams. Both predict most of the gamma-ray

characteristics of the impulse, such as the fact that the gamma-ray beam appears

in general larger than the radio one. The outer gap models predict the prominent

double-peaked profiles observed at high energies and other characteristics are

explained by geometrical factors. On the other hand, the models which explain

the radio emission hint to the fact that pairs are created in vacuum at the polar caps

and it would be straightforward to apply the same mechanism to the high-energy

emission. The polar cap model predicts that the MSPs should have a high energy

component up to energies of∼ 50MeV due to curvature radiation.

A substantial difference among the predictions of the two models resides in the

cutoff at high energies which is only assumed by the polar cap model. The models

predict a different number of expected radio-”quiet” (Geminga-like) pulsars with

respect to the radio-loud ones. The outer gap models, for example, do not predict
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the radio emission and therefore expect the high energy emission to come from a

different region than the radio and be completely unrelated to it. Another test of

the models resides in the number of MSPs that are expected to be observable in

globular clusters.

To these and other questions the detections of the new generation gamma-ray

satellitesAGILE andFermi-LAT have partly answered and to this topic is devoted

this Thesis. Many more questions have been raised by the new discoveries which

will constitute the new challenges of pulsars studies for the next decades.
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Chapter 2

Pulsar Observations

This Thesis is based on the observation of gamma-ray pulsars. As will be clearer

in the second part of this chapter, the gamma-ray observations typically cannot be

performed without the support of the radio observations. My preliminary work was

based on the radio timing of pulsars, that is detailed in the following.

In the second part of this chapter,AGILE techniques for gamma-ray

observation and timing of pulsars are described. These techniques are also detailed

in the first pulsar work from theAGILE Collaboration, [173], where we solved for

the first time the problem of analyzing long data-spans, perfectly accounting for the

pulsar rotational parameters, without being affected by heavy light curve smearing.

The techniques used for theFermi-LAT observations of pulsars are fairly similar in

their general outline, but are not detailed here as their development was not a part

of this Thesis’ work.

2.1 Radio Pulsars’ Observations

It is estimated that there are about 160,000 pulsars in the Milky Way; only 2000

of them are known and, due to the width or casual inclination of the beam with

respect to our line of sight, most of them will never be visible. Outside the Galaxy,

pulsars have been observed only in the Magellanic Clouds and, with the present

instruments, it is hard to go farther, since the flux density (usually indicated withS

in the radio band) scales with the distanced asS= L
4πd2 . With intrinsic luminosities,

atν = 1.4 GHz,0.1<∼L<∼1000mJy kpc2 (1milliJansky=10−29 W m−2 Hz−1), typical

of pulsars, and the beaming factor to take into account, there is no possibility

to detect them atd > 50 kpc with the present instrumentation. To improve the

lowest flux that can be detected, one can act on many parameters (temperature

of the receiver, gain, integration time, amplitude of the frequency band), but the
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present receivers already are pushed to their best performances for most of them.

The situation will notably change when the Square Kilometer Array (SKA) will

operate. For some of these parameters, no easy solution can be adopted because a

compromise is to be found between the requirements to reach lower fluxes and the

optimization of the observations. For example (see Section 2.1.2), by increasing the

frequency band of the observations, the minimum flux observed can be lower, but

one incurs in a higher contribution from thedispersionphenomenon.

2.1.1 Characteristics of the Pulsed Signal: Single, Integrated and Standard
Profile

When a pulsar is observed, every single pulse coming from it represents a snapshot

of the magnetosphere at the moment of the emission, but it does not convey a

stable information on a pulsar. The profiles of the single pulses are in general

quite different from one another while what we need is a general information. An

integrated profile of a pulsar is what constitutes its signature. In order to obtain

a stable information thefolding of the pulses has to be performed (see Section

2.1.2). A pulse that is particularly stable and presents a high signal to noise ratio

(SNR), is considered as thestandard profileof a pulsar. It represents the general

characteristics of that pulsar and is used as the basis of the timing model (see Section

2.2.2).

2.1.2 Dedispersion and Folding

Dedispersion The pulsed signal from a pulsar reaches us after crossing a not-

empty medium, in the condition of partially ionized plasma. The signal has agroup

velocity

vg = c

√
1− nee2

2πmeν2 = c

√
1− ν2

p

ν2 (2.1)

wherec is the velocity of light in vacuum,ne, e andme are the density, charge and

mass of the electron,ν is the signal frequency andνp is theplasma frequency, which

depends on the density of electrons in the medium and below which the signal is

completely absorbed by the medium. Given this group velocity, it takest =
∫ d

0
dl
vg

to cover a distanced. This means that, if the observation is performed within a

non-infinitesimal frequency band, the time profile will widen as

∆tDM =
e2

2πmec
· ( 1

ν2
lo

− 1

ν2
hi

)
∫ d

0
nedl (2.2)
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whereνlo andνhi are the borders of the frequency interval and
∫ d

0 nedl = DM is the

dispersion measureand it represents the column density of the free electrons along

the line of sight. Because of the dispersion, the high-frequency signals reach us

before the low-frequency ones. For a small frequency interval∆ν , this relation can

be written in the approximate form:

∆tDM ≈ 8.3·103∆ν
ν3 DM s (2.3)

where frequencies are in MHz andDM in pc cm−3.

As can be seen from this last equation, the widening of the time signal depends

on the amplitude of the frequency band that is used. This means that the amplitude

of the profile partly depends on the dispersion. The solution used to solve this

problem is thededispersion. Since a large band prevents the observation of the

pulsed signal (which would be wider than the pulsation period), the whole band is

divided into small intervals where the signal is visible. At the end, all the frequency

channels are summed up, each with a different shift corresponding to its specific

frequency. In this way the peaks from every channel are superimposed in phase and

can be added coherently.

Folding As said (Section 2.1.1), the single pulses from pulsars are not useful for

the timing because they do not give a stable information on the pulsar behavior. To

obtain a general information, the operation we use is thefolding of the pulses. The

time series is folded modulo the period of the candidate signal. First, a preliminary

estimate of the rotational period is obtained: a Fast Fourier Transform (FFT) is

applied to the time series and we obtain a power spectrum whose peaks correspond

to the periodicities found in the data. A periodic signal shows a family of harmonics

in its spectrum, which can only be observed when added up, when the spectrum is

weak. The secondary harmonics give a relevant contribution in the case of pulsars

which have a sharply peaked profile and not a wide sinusoidal profile.

After this indication of the period is obtained with the Fourier analysis, the time

series is split into a number of sub-integrations which all should include a significant

number of periods. The folding of the time series modulo the pulse period is

performed within each sub-integration and subsequently the sub-integrations are

themselves added up, each with a different phase shift to maximize the SNR. The

first estimate of the period should be as accurate as possible so as not to compromise

the folding: if it is not, the error gets propagated into all sub-integrations and a drift
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of the signal is observed, that is not compensated for by the phase shifts. Instead

of maximizing the signal, the risk is to lose it completely. If, on the contrary, the

estimate is correct, what is obtained from the folding is the integrated profile of that

pulsar (see Section 2.1.1).

Figure 2.1 Schematic view of the timing process. The process is detailed in the text.

2.2 Timing a Pulsar

Those that have just been illustrated are the preliminary operations one has to

perform with the raw data before the actualtiming. The timing, schematically

illustrated in Figure 2.1, is the fundamental instrument in the study of pulsars

because it is the means to obtain very precise values of the parameters of a pulsar

and heretofore is the basis for the use of pulsars as probes. The timing of a pulsar

consists in the regular monitoring of the rotation of the neutron star through the

study of the Time of Arrivals (ToAs) of the radio pulses. As will be seen later on

(see Section 2.4), the timing at other wavelengths does not necessarily follow this

procedure.

2.2.1 The Time of Arrivals of the Pulse

Usually the timing measurements take place as soon as the pulsar is discovered.

Firstly, to each observation are assigned GPS spacial coordinates, relative to the

receiver (or in general the observing instrument), and a temporal coordinate, from

a hydrogen maser or a cesium clock present at the observatory. Once the standard

profile (see Section 2.1.1) has been produced, it is convolved with the integrated

profile relative to each observation and from the convolution we obtain the ToA of
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the pulsed signal at the telescope, which is relative to the telescope and not inertial,

as it is, i.e.topocentric.

Preliminary is the definition of an expression to describe the rotation of the

pulsar in a co-moving reference frame; the rotational frequency of the pulsar can be

written in the form of a Taylor expansion:

ν = ν0 + ν̇0(t− t0)+
1
2

ν̈0(t− t0)2 + ... (2.4)

whereν0 = ν(t0) is the frequency at the reference epocht0 and so are its derivatives.

The observed parameters,ν and ν̇ are related to the physical processes that

determine the pulsar slow down;ν̈ is generally measurable only in the youngest

pulsars. Since the spin frequency corresponds to the regime of variation of the

number of pulsesN, this can be re-written as

N = N0 +ν0(t− t0)+
1
2

ν̇0(t− t0)2 +
1
6

ν̈(t− t0)3 + ... (2.5)

whereN0 is the number of pulses at the reference epocht0. If t0 is coincident

with the arrival of a pulse, and the spin-down time is known with accuracy, then

the pulses should appear as integer values ofN when observed from an inertial

reference frame.

The ToAs which are thus obtained are not referred to an inertial reference

frame: we want them to be referred to the Solar System Barycenter (SSB). The

passage is twofold: as a first thing the topocentric arrival times are referred to the

center of the Earth, thus becominggeocentricToAs; secondly, let us considerT to

be thebarycentricarrival time andt the geocentric one: the difference is calculated

as [212]

T− t = ∆R̄ +∆E¯+∆S̄ −∆tDM. (2.6)

To the difference contribute the corrections of, respectively, Rœmer, Einstein and

Shapiro to the ToAs, plus the contribution of the DM. The Rœmer correction,∆R̄ ,

is the sum of two terms: one that takes into account the time for the light to travel

from the Earth to the SSB, the other which introduces a delay due to the fact that

the wave fronts are spherical, even though, for the majority of pulsars, except the

closest ones, the approximation of plane wave can be held valid. The Einstein

and Shapiro correction are due to the effects of the general relativity within the

solar system.The dispersion term relates the observed ToA to the one that would be

observed at infinite frequency, otherwise every observing frequency would carry its

own time delay.
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Figure 2.2 Residuals in the timing model for PSR B1133+16. (a) shows the residuals
obtained with the best fit model, including period, period derivative, position and proper
motion. (b) is what is obtained by fixing the period derivative to zero for this model. (c)
shows the effect of a 1 arcmin error in the estimated declination. (d) shows the residuals
one would obtain with the proper motion set to zero. The lines in (b), (c) e (d) show the
predicted trend for the residuals relative to each effect (see text).

2.2.2 The Timing Model and the Residuals

The barycentric ToAs only depend, at this point, on the pulsar parameters:

rotational, positional, of proper motion and also dispersion measure. By assigning

an initial value to these parameters, we create atiming modelwhich, in turn, is able

to predict the barycentric ToAs of pulses at infinite frequency. The ToAs obtained

by the model estimates are to be compared with observations. The differences

between predicted and observed ToAs constitute thetiming residuals. If the model

is correct, then the residuals would randomly be spread around zero, meaning that

the difference between the predicted and observed ToAs is null within the errors.

If, on the other hand, the differences are relevant and one or more parameters have

been wrongly estimated, the residuals will be characterized by systematic trends.

Usually, if the error only affects one parameter, it can be easily spotted by

the trend of the residuals: it is a straight line if the error is on the estimate of the

period, a parabola if the error is oṅP, a sinusoid with yearly period if the error

is on the position, and so on. Not always the trends are so easily distinguishable
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from one another as in Figure 2.2: more than one parameter can be not accurate, or

the observations are not enough or are too discontinuous to help separate different

trends.

The timing process is iterative. At each step the residuals are minimized and

eventually, when the observations have been carried on long enough, the timing

allows to determine the spin parameters (P, Ṗ, P̈, ...) and the astrometric ones

(position, proper motion, parallax, dispersion measure), for the isolated pulsars.

For pulsars in binary systems also the orbital parameters can be assessed. The five

Keplerian parameters that can be obtained are: the orbital periodPb, the longitude

of the periastronω, the epoch of passage at periastronT0, the eccentricityeand the

projection of the semi-major axisx = asini, wherea is the semi-major axis andi

the inclination angle of the orbital plane. From these parameters it is possible to

determine the mass function:

f (mp,mc) =
4π2

G

(apsini)3

P2
b

=
(mcsini)3

(mp +mc)2 (2.7)

where mp and mc are the pulsar and companion masses,G is the gravitational

constant and the rest are the above mentioned keplerian parameters. From the

mass function, assuming a standard pulsar mass of1.4M¯, it is possible to estimate

the companion mass as a function of the inclination angle of the orbit,i, with a

minimum in correspondence ofi = 90o. If the system is very tightly bound, and

therefore relativistic, in a longer time it is also possible to retrieve the five Post-

Keplerian (PK) parameters:̇Pb, orbital period derivative;ω̇, periastron longitude

derivative;r ands, Shapiro relativistic corrections, andγ relativistic correction due

to the gravitational redshift. In the gravitational theories, the PK parameters depend

on the known keplerian ones and on the two masses of the system, unknown at first.

The measurement of one PK parameter puts constraints on the masses values; the

measurement of two determines the masses in the framework of a specific theory.

The results obtained after 3 years from its discovery, from the binary pulsar J0737-

3039, consented the confirmation of Einstein’s relativity theory at, at least, 99.95 %

[124]. Even better results are expected from the follow-ups from recent years and

these are in fact some of the more interesting prospects for future pulsar studies (see

Section 1.1.1).
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Figure 2.3 Effect of the timing noise on pulsar residuals. As can be observed, no specific
trend can be distinguished in the noise, nor a specific amplitude.
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2.2.3 The Timing Noise

The timing noiseis a quasi-random variation of one or more rotational parameters

in time scales of months or years. In general, it scales with the period derivative,

Ṗ, and thus it usually affects the timing of young pulsars, even though examples

of timing noise can be observed, of lower amplitude, even in millisecond pulsars

[115, 48]. In general the timing noise is reflected in the measurement of the second

derivative of the rotational frequency,ν̈ , which presents values that are strongly

inconsistent with those that would be expected from the standard evolution of the

pulsar period with braking indexn = 3 (see Section 1.1.3). From equation 1.4 it

emerges an expectedν̈ value:

ν̈ = n
ν̇2

ν
. (2.8)

Assuming for an ordinary pulsarν ∼ 1 Hz andν̇ ∼ 10−15 Hz s−1, for n = 3 one

finds ν̈ ∼ 10−30 Hz s−2. These values are hard to measure but for the youngest

pulsars. In some cases the timing procedure leads to much larger values than this,

either positive or negative, and this is an index of the timing noise.

While it has proven difficult to find out what causes of the timing noise, some

progress has been made on excluding some possible origins. It is not to be due

to effects introduced by pulsar timing packages, nor the observatories or receiver

systems [104, 102]. The same authors concluded that it is not caused by off-

line processing either. [51] found that the timing noise is not correlated with

height above the Galactic plane, luminosity or pulse shape changes. The effects

of interstellar or interplanetary DM variations do not seem to cause it either. The

physical models to explain the timing noise can be divided into those intrinsic to the

pulsar or related to the companion and those that are extrinsic. Among the intrinsic

models, it is suggested that rotational irregularities might arise from a random walk

process that involves unresolved step functions in the pulse phase, spin frequency

or frequency derivative [39]. Various models are based on the superfluid interior

of the neutron star affecting the pulsar rotation, or on the neutron star undergoing

some precession, which would explain the sinusoidal features observed in some

cases, or variations in the outer magnetosphere that give rise to changes in the

braking torque which will lead to a random walk in the rotational frequency. Any

unmodeled orbiting companion could cause timing noise-like behavior. Extrinsic

causes such as terrestrial clock errors, inaccuracies in the solar system ephemeris

and even gravitational waves can be responsible for noise in the residuals. If this
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happened, however, one would observe it in different pulsars with a similar trend.

In order to remove the timing noise from the data, it is possible to include

higher order frequency derivatives in the timing model (see Section 2.2.1). Many

orders can be necessary to remove the noise. A more refined method that has been

implemented in the latest versions of the radio softwares used to analyze pulsar data

is theFITWAVEStechnique [103, 104, 70]. The long term behavior is modeled by a

sum of harmonically correlated waves which are subtracted to the residuals before

the rest of the analysis. This will not affect periodicities like, for example, a sinusoid

of growing amplitude produced by the proper motion which can be successively

retrieved. This same innovative procedure has ben applied for the first time in

gamma-ray timing analysis by our group onAGILE data (see Section 2.5.3).

2.3 Gamma-Ray Pulsars’ Observations

The main aim of this Thesis has been the characterization of pulsars in gamma-rays.

I mainly operated on data from the Italian satelliteAGILE, being a member of the

AGILE Team andAGILE Pulsar Working Group, so I will mostly concentrate on

data reduction and analysis from theAGILE observations. I also worked on data

from theFermi-LAT satellite and theMAGIC telescope, which will be presented in

their context. Details on the operations of the three telescopes are in the following.

2.3.1 Gamma-Ray Astronomy

The gamma radiation is produced by non-thermal processes, originated in

interactions by high-energy particles. In general, in the case of diffuse radiation,

the emission comes from the interaction between the cosmic rays and the ISM.

If the emission comes from discrete sources, then the emission is due to the

curvature radiation, non-thermal synchrotron, Inverse Compton (IC) or non-thermal

Bremsstrahlung mechanisms.

The gamma-rays can only be observed from space up to about 30 GeV. In April

2007, almost ten years after the demise of theCGRO, the Italian Space Agency

(ASI) launched theAGILE satellite for gamma-ray astronomy. In June 2008 the

NASA launched its own heir of theEGRETtelescope: formerly theGamma-rays

Large Area Space Telescope, GLASTthen dubbedFermi-LAT satellite after the

successful launch. A dedicated description of the two telescopes is presented in

the next two Sections.
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The observation at Very High Energies (VHE, above∼ 50GeV) is not feasible

from space, due to the low fluxes involved, so it is performed from Earth using

Ionizing Atmospheric Cherenkov Telescopes (IACTs), whose primary scope is

to collect shower images, focusing the Cherenkov light emitted by atmospheric

shower particles during their passage through the atmosphere. They make use of

the Cherenkov light produced in the atmosphere by transversing cascades of the

particles that are originated by the incoming gamma-ray when passing the higher

layers of the magnetosphere. Three major telescopes are at present operating at the

VHE: MAGIC in the Canary Islands,HESSin Namibia andVERITASin Arizona.

They operate in slightly different ranges between around 50 GeV up to 50 TeV.

The MAGIC telescope, on whose data part of the work of this Thesis is based, is

described in more detail in Section 2.3.4.

2.3.2 The AGILE Satellite

The Astro-rivelatore Gamma a Immagini LEggero(AGILE) is an Italian satellite

which uses the new solid state detectors’ techniques. As its name says, it is

extremely light (it weighs only∼ 100 kg) and nonetheless efficient in the the

detection and monitoring of the gamma-ray sources between 30 MeV and 50 GeV.

The energy interval is similar to theEGRETone but the field of view much wider:

1/5 of the sky. The system is designed to have a very good angular resolution (with

an accuracy for the position determination of a source of∼ 5′−20′ for the bright

sources) and, as said, a large field of view (>∼2 sr), with a sensitivity comparable

to EGRET’s for point sources on-axis and even better thanEGRET’s for off-axis

sources. The basic concept ofAGILE is an integrated instrument constituted by

three detectors with a large detection band and with imaging capabilities. The

three detectors are: theGRID, Super-AGILEand theMini-Calorimeter. An anti-

coincidence system surrounds the whole instrument along 5 parts (upwards and

laterally) and it separates gamma-rays from particles: the plastic scintillators collect

the spurious signals, not coming from the gamma-ray radiation, and they are

conveyed towards the photomultipliers, which communicate to the read-out system

that the instrument is being passed by a high energy charged particle and not

radiation.AGILE electronics allows fast readout operations and data-processing.

Among the three instruments, theGamma-Ray Imaging Detector(GRID) is

the main detector and the one that has been used for the purposes of this work.

Sensitive to the energy band between 30 MeV and 50 GeV, it is made of a silicon
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tracker and a mini-calorimeter of cesium iodide (CsI). The silicon layers give thex

andy coordinates of the charged particles for each pair, as it crosses theGRID and

all of them in the end keep track of the path, so as to reconstruct the arrival direction

of the initial photon. The signal from the silicon tracker goes to the readout system.

The mini-calorimeter helps determining the total energy of the incident photon. The

angular resolutionof theGRIDat 1 GeV, with a containment radius of 67% is lower

than0.5◦ with a positioning capability of 5’–20’. The nominaltime resolutionis

∼ 1µs with a dead time of≤ 200µs. Theenergy resolutioncombining tracker and

mini-calorimeter is∆E/E ∼ 1 at 200 MeV and even better below 100 MeV (see

also Chapter 3). TheGRID has aneffective areaof ∼ 500cm2 which is dependent

on the energy and incident angle of the collected photon, which decreases for angles

> 60◦ off-axis.

The AGILE spacecraft was launched on April 23 2007 and placed in a Low

Earth Orbit (LEO) at∼ 535 km of mean altitude with an inclination of2.5◦:
Earth occultation strongly affects the exposure along the orbital plane, as well as

a high particle background rate during the South Atlantic Anomaly (SAA) transits.

However, the exposure efficiency is> 50% for mostAGILE revolutions. AGILE

pointings consist of long exposures (typically lasting 10- 30 days) slightly drifting

(≤ 1◦/day) with respect to the starting pointing direction in order to match solar-

panels illumination constraints. The relatively uniform values of the effective area

and point-spread function (PSF) within∼ 40◦ from the center of the Field of View

(FoV) of theGRID allow for one-month pointings without significant vignetting in

the exposure of the target region. In late October 2009,AGILE started observing

in spinning mode due to reaction wheel failure. This failure is not affecting

AGILE/GRID sensitivity and pulsar observations although the new spinning mode

required calibration revisions.

2.3.3 The Fermi - Large Area Telescope

The Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on

the Fermi Gamma-ray Space Telescopemission, is an imaging, wide FoV, high-

energy gamma-ray telescope, covering the energy range from below 20 MeV to

more than 300 GeV. The LAT was built by an international collaboration with

contributions from space agencies, high-energy particle physics institutes, and

universities in France, Italy, Japan, Sweden, and the United States. The LAT is a

pair-conversion telescope with a precision tracker and calorimeter, each consisting
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of a 4×4 array of 16 modules, a segmented anti-coincidence detector that covers

the tracker array, and a programmable trigger and data acquisition system. The

calorimeters depth and segmentation enable the high-energy reach of the LAT. The

aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and

ensuring that most pair-conversion showers initiated in the tracker will pass into the

calorimeter for energy measurement.

Fermi-LAT was launched into a LEO and, after a six-week commissioning

phase, began nominal sky-survey observations on 2008 August 11. The LAT, the

main instrument on board Fermi, is a pair-production telescope [28] sensitive to

gamma-rays from 20 MeV to at least 300 GeV with on-axis effective area> 1 GeV

of ∼ 8000cm2, exceeding that ofEGRETby a factor of about 5. In survey mode, it

observes the entire sky every 3 hr. The LAT was tested in the initial 35 days in on-

orbit verication that included sky-survey tuning and pointed-mode tuning on Vela,

from 2008 June 30 to August 3, as well as the initial 15 weeks of sky survey, from

2008 August 3 to November 16.

During its first three years of operation,Fermi-LAT has provided an

unprecedented view of the high-energy gamma-ray sky. More than 70% of the

photons detected by the LAT are produced in the interstellar space of our Galaxy by

interactions of high-energy cosmic rays (CRs) with matter and low-energy radiation

fields. An additional diffuse component with an almost isotropic distribution, and

therefore thought to be extragalactic in origin, accounts for another sizable fraction

of the LAT photon sample. The rest consists of sources detected by the LAT from a

variegate zoo of objects including active galactic nuclei and normal galaxies, pulsars

and their relativistic wind nebulae, globular clusters, binary systems, shock-waves

remaining from supernova explosions and nearby solar-system bodies like the Sun

and the Moon. The firstFermi-LAT catalog (1FGL), based on 11 months of data,

comprised 1451 sources, with respect to the 271 of the thirdEGRETcatalog (3EG).

After 24 months of observations, the second catalog released on July 2011 contains

1873 sources detected and characterized in the 100 MeV to 100 GeV range.

2.3.4 Observing at Very High Energies: science withMAGIC

The 17 m diameterMajor Atmospheric Gamma Imaging Cherenkov-telescope,

MAGIC, is a state of the art instrument for exploring the very high energy (VHE)

gamma-ray sky. It is located on the Roque de los Muchachos Observatory, in

La Palma (Canary Islands, Spain).MAGIC was built and is operated by a large
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Figure 2.4 Schematics of the IACT detection of atmospheric showers. When the primary
particle interacts in the top layers of the atmosphere, an air shower of particles is generated,
characterized by a head (dark blue) and a tail (light blue). From the shower, the Cherenkov
photons (blue lines) propagate to the ground at increasing angle with increasing shower
development and atmospheric depth. The photons are reflected onto the focal plane at a
distance from the center of the camera which reflects the shower impact parameter, i.e.
the distance from the telescope axis. The camera is ”pixelized” and the image can be
reconstructed. Figure from [139] .
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international collaboration. A gamma-ray source emitting at a flux level of 1.6%

of the Crab Nebula can be detected at a5σ significance level in 50 hours of

observations. The relative energy resolution above 100 GeV is better than 30%

and the angular resolution is∼ 0.1◦. The construction of a second telescope is now

complete andMAGIC started stereoscopic observations after the commissioning

phase of MAGIC-II in mid-april 2009.

MAGIC works by detecting the faint flashes of Cherenkov light produced

when gamma-rays (or CRs) plunge into the Earth atmosphere and initiate showers

of secondary particles. The Cherenkov light emitted by the charged secondary

particles is reflected by the telescope mirror and an image of the shower is obtained

in the telescope camera (see Figure 2.4). An off-line analysis of the shower

images allows the rejection of the hadronic CR background, the measurement of

the incoming direction of the gamma-rays, and the estimation of their energy.

The MAGIC telescope was built with the aim of achieving the lowest possible

energy threshold, and since 2004 it operates with the lowest threshold worldwide,

namely∼ 50 GeV. An even lower threshold was achieved with a new trigger

concept, the sum-trigger (see e.g. [146] and references therein), which provides

a better discrimination of the faint flashes of Cherenkov photons from the night-

sky background and made it possible to reach a threshold of 25 GeV and to detect

pulsed emission from the Crab pulsar (see [18] and Section 3.5).

2.4 Timing a Pulsar in Gamma-Rays

The basics of pulsar timing in gamma-rays are given, mainly referred to the analysis

as it is done using data collected from theAGILE telescope. The techniques are

similar to those employed in their analysis by all gamma-ray telescopes

Pulsar data were collected during the mission Science Verification Phase (SVP;

2007 July - November) and early pointings (2007 December - 2008 April) of

the AO 1 Observing Program. It is worth noting that a singleAGILE pointing

on the Galactic Plane embraces about one-third of it, allowing for simultaneous

multiple source targeting (e.g., the Vela and Anti-Center regions in the same FoV

with Crab, Geminga, and Vela being observed at once; see Figure 2.5). The

AGILE Commissioning and SVP lasted about seven months from 2007 April 23

to November 30, also including Instrument Time Calibration. On 2007 December

1, baseline nominal observations and a pointing plan started together with the Guest

Observer program AO 1. Timing observations suitable for pulsed signal analysis of
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Figure 2.5 Gaussian-smoothedAGILE intensity map (∼ 120◦× 60◦, units: ph cm−2 s−1

sr−1, E > 100 MeV) in Galactic coordinates integrated over the observing period (2007
July 132008 April 10) and centered atl = 223◦, b = 0◦. TheAGILE field of view (radius
∼ 60◦) can embrace in a single pointing Vela (l = 263.6◦, b=−2.8◦), Geminga (l = 195.1◦,
b = 4.3◦) and Crab (l = 184.6◦, b = −5.8◦) as well as diffuse emission from the Galactic
Disk.

the Vela pulsar started in mid 2007 July (at orbit 1146) after engineering tests on

the payload.

2.5 AGILE New Techniques for Gamma-Ray Timing

Data screening, particle background filtering, event direction and energy

reconstruction are performed by theAGILE Standard Analysis Pipeline atE > 100

MeV. Observations affected by coarse pointing, non-nominal settings or intense

particle background (e.g. orbital passages in SAA), and albedo events from the

Earths limb were excluded from the processing. A specific optimization on the

events extraction parameters is performed for each target in order to maximize the

SNR for a pulsed signal. The optimal event extraction radius around pulsar positions

varies as a function of photon energy (and then it is related to pulsar spectra)

according to the PSF. However, forE > 100 MeV broadband analysis, a fixed

extraction radius of∼ 5◦ (a value slightly higher than the PSF 68% containment

radius) produces comparable results with respect to energy-dependent extraction.

Quality flags define differentGRID event classes. The G event class

includes events identified with good confidence as photons. Such selection criteria

correspond to an effective area of∼ 250cm2 above 100 MeV (for sources within
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30◦ from the center of the FoV). The L event class includes events typically affected

by an order of magnitude higher particle contamination than G, but yielding an

effective area of∼ 500 cm2 at E > 100 MeV, if grouped with the G class. We

performed our timing analysis looking for pulsed signals, using both G class events

and the combination of G+L events. In general, the SNR of the pulsed signal is

maximized using photons collected within∼ 40−60◦ from the center of theGRID

FoV and selecting the event class G. For very strong sources, such as Vela, or

sources located in low background regions, it is also possible to include photons

in the 40− 60◦ off-axis range and belonging to the G+L event class typically

improving the count statistics by up to a factor of 3 (obviously also implying a much

higher background), without affecting or even improving the detection significance.

The corresponding total exposure was calculated with theGRID scientific

analysis task AGExpmapGen according to the above parameters. Summing up the

photon numbers, we see that the overall photon statistics accumulated during the

first year ofAGILE (accounting for background contamination) is comparable with

that collected byEGRET for the same pulsars. A maximum likelihood analysis

(ALIKE task) on theAGILE data from the sky areas containing the gamma-ray

pulsars yields source positions, fluxes, and spectra. We also calculate the pulsed flux

starting from the pulsed counts and compare it with that obtained from the spacial

analysis: it will typically be affected by higher errors, but it accounts for only the

flux actually coming from the pulsar and not contaminations from the pulsar wind

nebula or supernova remnant, or nearby underlying sources.

2.5.1 The Fundamental Role of the Radio Timing

A gamma-ray telescope typically will not be able to collect a large number of

photons for each observation. A pulsar emits a few gamma-ray photons compared to

the number of rotations. Even for a pulsar like the Crab, among the three brightest in

the gamma-ray sky, only one photon is received over hundreds of rotations. Even a

new generation telescope likeAGILE, therefore, is helped by, and sometimes cannot

operate without, the radio observations. It has to be noted thatFermi-LAT, with its

large effective area, has been optimized to be also able to perform a blind search (see

[29] for details) which has actually led to the discovery of a number of new pulsars

not previously known in radio [6, 196]. Even in theFermi-LAT’s case, though, the

radio support leads to a more accurate characterization of the light curves.

The limited statistics makes it impossible to use in the gamma-ray band
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the same methods that are used in the radio to look for periodicities: direct

resolution methods such as the FFT and the folding (see Section 2.1.2) are hardly

efficient to detect a pulsed signal in gamma-rays. A solution to this problem

is found in combining accurate and intensive radio observations to long high-

energy observations. The long observing times are needed to collect a statistically

significant number of photons; the analysis of radio pulsars provides extremely

accurate rotational ephemerides (see Section 2.2.2) which make it possible to obtain

the rotational phase of each of the arriving photons. At this point the collected

gamma-ray photons are all used to produce a single light curve and, in the favorable

cases, this leads to enough statistics as to be able to recognize a pulsed signal. Even

after the detection of a new gamma-ray pulsar, in order to keep observing, it is

still necessary to fold the photons using the ephemerides obtained from the radio

observations.

In most cases the pulsars observed in gamma-rays are young and they present

glitches and timing noise (see Sections 1.1.4 and 2.2.3). Their effects are relevant

in the timing: the noise ”pollutes” the residuals and this makes the evaluation of

the parameters of a pulsar less precise. The glitches provoke jumps in the rotational

period, which bring to a discontinuity in the data-set: the residuals pre- and post-

glitch cannot be aligned unless the glitch is fitted for. Seeing as pulsars, and in

particular those observed by gamma-ray telescopes, are affected by such timing

irregularities, the ephemeris relative to a given epoch cannot be extrapolated for a

time-span longer than a few months. It is thus required to continuously observe

the pulsars in the radio, to have a thorough coverage of the gamma-ray telescope

observations. In summary, the radio timing of known or candidate pulsars, before

and during its observations, is fundamental for the operation of a gamma-ray

telescope.

In order to perform theAGILE timing calibration through accurate folding and

phasing, pulsar timing solutions valid for the epoch ofAGILE observations were

required. Thus, a dedicated pulsar monitoring campaign (that will continue during

the wholeAGILE mission) was undertaken, using two telescopes (namely Jodrell

Bank and Nançay) of theEuropean Pulsar Timing Array(EPTA), as well as the

Parkes radio telescope of theCommonwealth Scientific and Industrial Research

Organisation(CSIRO) Australia Telescope National Facility(ATNF) and the 26 m

Mt Pleasant radio telescope operated by the University of Tasmania. In particular,

the observations of the Vela Pulsar have been secured by the Mt. Pleasant Radio
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Observatory. Data were collected at a central frequency of 1.4 GHz. Given the

pulsar brightness, it is possible to extract a pulse ToA about every 10 s, so that a

total of 4098 ToAs are obtained for the time interval between 2007 February 26

(MJD 54,157) and 2008 March 23 (MJD 54,548), encompassing the whole time

span of theAGILE observations.

The timing of all pulsars in radio is performed using the TEMPO2 software

[104, 70]. It first converts the topocentric ToAs to solar-system barycentric ToAs at

infinite frequency (using the Jet Propulsion Laboratory (JPL) DE405 solar system

ephemeris) and then performs a multi-parameter least-square fit to determine the

pulsar parameters. The procedure is iterative and improves with longer timescales

of observations. An important feature developed by TEMPO2 is the possibility

of accounting for the timing noise in the fitting procedure. TEMPO2 corrects the

effects of the timing noise on the residuals by modeling its behavior as a sum of

harmonically correlated sinusoidal waves that is subtracted from the residuals (see

Section 2.5.3).

2.5.2 Folding and Light Curve Generation

In this section, the timing procedures we have adopted will be described. They have

been implemented with two aims: to verify the timing performances ofAGILE and

to maximize the quality of the detection of the targets.

AGILEon-board time is synchronized to Universal Coordinate Time (UTC) by

the Global Positioning System (GPS) time sampled at a rate of 1 Hz. Arrival time

entries inAGILE event list files are then corrected to Terrestrial Dynamical Time

(TDT) reference system at a ground segment level. In order to perform the timing

analysis, they also have to be converted to Barycentric Dynamical Time (TDB)

reference and corrected for arrival delays at SSB. This conversion is based on the

precise knowledge of the spacecraft position in the solar system frame. To match the

instrumental microsecond absolute timing resolution level, the required spacecraft

positioning precision is≤ 0.3 km. This goal is achieved by the interpolation of GPS

position samples extracted from telemetry packets. Earth position and velocity with

respect to SSB are then calculated by JPL planetary ephemeris DE405. All the

above barycentric corrections are handled by a dedicated program (implemented in

theAGILE standard data reduction pipeline) on the event list extracted according to

the criteria described in Section 2.4.

As said, pulsed signals inGRID gamma-ray data cannot be simply found
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by Fourier analysis of the photon SSB arrival times, since the pulsar rotation

frequencies are 4–5 orders of magnitude higher than the gamma-ray pulsars typical

count rates (10–100 counts/day). The determination of the pulsar rotational

parameters in the gamma ray must then start from at least approximate knowledge of

the pulsar spin ephemeris, provided by observations at other wavelengths. Standard

epoch folding is performed over a tridimensional grid centered on the nominal

values of the pulsar spin frequencyν0 and of its first- and second-order time

derivatives,ν̇0 andν̈0, as given by the assumed (radio or X-ray) ephemeris at their

reference epocht0 = PEPOCH. The axes of the grid are explored with steps equal

to 1/Tspan, 2/T2
span, and6/T3

span(all of them oversampled by a factor of 20), where

Tspan is the time span of the gamma-ray data. For any assigned[ν ; ν̇ ; ν̈ ], the pulsar

phaseΦ∗ associated to each gamma-ray photon is determined by the expression

Φ∗ = Φ0 +ν∆T +
1
2

ν̇∆t2 +
1
6

ν̈∆t3, (2.9)

where∆t = t − t0 is the difference between the SSB arrival time of the photon,t,

and the reference epocht0 of the ephemeris andΦ0 is a reference phase.

A light curve is formed by binning the pulsar phases of all the phases of

the photons and plotting them in a histogram. Pearson’sχ2 statistics is then

applied to the light curves resulting from each set of spin parameters, yielding the

probabilities of sampling a uniform distribution. These probabilitiesP(ν ; ν̇ ; ν̈) are

then weighted for the number of stepsNst over the grid, which has been necessary to

reach the set[ν ; ν̇ ; ν̈ ], starting from[ν0; ν̇0; ν̈0]. The maximum value over the grid of

S = 1−NstP(ν ; ν̇ ; ν̈) finally determines which are the best rotational parameters

for the target source in the surroundings of the given ephemeris. Of course, the

higher the value ofS , the higher is the statistical significance of a pulsating signal.

We note that this approach allows us to avoid any arbitrariness in the choice of the

range of the parameters to be explored, which otherwise can affect the significance

of a detection.

The effective time resolution ofAGILE light curves results from the

combination of the different steps involved in the processing of gamma-ray photons

arrival times. The on-board time tagging accuracy is a mere∼ 1µs, with negligible

dead time. For comparison, the correspondingEGRETtime tagging accuracy was

∼ 100µs. The precise GPS space-time positioning of theAGILE spacecraft allows

for the transformation from UTC to the SSB time frame (TDB) with only a moderate

loss (≤ 10µs) of the intrinsic instrumental timing accuracy. The innovative folding

technique which also accounts for pulsar timing noise (see next Section) also
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reduces the smearing effects in the light curves, fully exploiting all the information

from contemporary radio observations. In summary, the effective time resolution of

the currentAGILEpulsar light curves (and then multi-wavelength phasing accuracy

assumingterr = 1µs) is mainly limited by

∆t =
P
N

=
σ2(Cp +2B)

C2
p

, (2.10)

whereP is the pulsar period,N is the number of bins in the light curve histogram,

σ is the SNR,Cp are the pulsed counts andB are the background counts. In order

to keep the average SNR of the light curve bins (during the on-pulse phase) at

a reasonable level (> 3σ ), the resulting effective time resolution is constrained to

200−500µs. At present the best effective time resolution (∼ 200µs) is obtained for

the 400 bin light curve of Vela (G+L class selection) although a 100 bin light curve

is better suited to study pulse shapes and to search for possible weak features. The

effective time resolution will obviously improve with exposure time as∆t ∝ T−1
exp.

2.5.3 Timing Noise Correction

An additional significant improvement in the detection significance has been

obtained by also accounting for the pulsar timing noise (see Section 2.2.3) in the

folding procedure. This exploits a tool of TEMPO2 [104, 70], namely the possibility

if fitting timing residuals with a polynomial harmonic function∆R in addition to the

standard positional, rotational and (when appropriate) binary parameters [103]:

∆R(∆t) =
N

∑
k=1

ak sin(kω∆t)+bk sin(kω∆t), (2.11)

whereN is the number of harmonics (constrained by precision requirements on

radio timing residuals, as well as by the span and the rate of the radio observations),

ak andbk are the fit parameters (i.e. theWAVE terms in the TEMPO2 ephemeris

files), andω = 2π(Tradio(1+4/N))−1 is the main frequency (i.e.WAVEOM in the

TEMPO2 ephemeris files) related to the radio data time spanTradio.

If the spin behavior of the target is suitably sampled, the harmonic function∆R

can absorb the rotational irregularities of the source, in a range of timescales ranging

from∼ Tradio down to about the typical interval between radio observations. As an

example, the peak-to-peak amplitude of the∆R fluctuations for Crab related to the

radio monitoring epochs 54,07454,563 MJD covering ourAGILEobservations is of

the order of∼ 1 ms (see Figure 2.6), corresponding to a phase smearing of> 0.03, a
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Figure 2.6 Post-fit timing residuals (in milli-turns) as a function of the Modified Julian Day
resulting from the observation at 1.4 GHz of the three radio pulsars which are discussed
in this paper: from the top Vela, Crab and PSR B1706–44. The panels in the left (right)
column report the residuals of the best available timing solutions obtained over the data
span not including (including) the correction of the timing noise via the use of the∆R term
(see Section 2.5.3). Note that for the Crab pulsar the scale on the vertical axis of the panel
in the right column is amplified by a factor 10 with respect to that in the left panel. The time
intervals corresponding to the usefulAGILE pointings for each target are also given as the
black sections of the bar at the bottom of each panel. .
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value significantly affecting the time resolution of a> 50-bin light curve. Under the

assumption that the ToAs of the gamma-ray photons are affected by timing noise

like in the radio band, gamma-rays folding can properly account for∆R, extending

Equation 2.11 to

Φ = Φ0 +(ν + ν̇∆t +
1
2

ν̈∆t2)∆R'Φ0 +ν∆t(1+
∆R
∆T

)+
1
2

ν̇∆t2 +
1
6

ν̈∆t3 (2.12)

This innovative phasing technique significantly improves the gamma-ray folding

accuracy for young and energetic pulsars, especially when using long data spans,

like those of theAGILE observations. Of course, the implementation of this

procedure requires radio observations covering the time span of the gamma-ray

observations making the radio monitoring described in Section 2.5.1 all the more

important.

2.5.4 Gamma-Ray Folding of Long Data Spans

Figure 2.7 Effect of the timing noise correction on the significance of the detection and
matching with radio parameters. The dashed line represents the period search result without
the use of the timing noise correction; the full line represents the period search after the
application of the timing noise correction.

Figure 2.7 shows theAGILE period search result for the Crab pulsar

(corresponding to the MJD 54,305–54,406 observations, significantly affected by

timing noise, as shown in Figure 2.6). The implementation of the folding method

described in Section 2.5.2, including timing noise corrections as given by Equation
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Figure 2.8 Effect of the timing noise correction on the pulsar light curve. As in the previous
Figure, the dashed curve represents the result without the use of the timing noise correction,
while the full line represents the light curve obtained after the application of the timing
noise correction to the period search.

2.12, allowed for a perfect match between the best period resulting from gamma-ray

data and the period predicted by the radio ephemeris with discrepancies∆PCrab∼
3×10−12 s, comparable with the period search resolutionrCrab∼ 2×10−12 s. This

also represents an ultimate test for the accuracy of the on-boardAGILE Processing

and Data Handling Unit (PDHU), time management (clock stability in particular),

and on-ground barycentric time correction procedure.

In order to verify the performances of the timing analysis procedure described,

a crucial parameter to check is the difference between pulsar rotation parameters

derived from radio, X-ray, and gamma-ray data. Despite the very satisfactory

matching of the pulsar spin parameters found in radio (or X-ray) and gamma-ray

(supporting the clock stability and the correctness of the SSB transformations),

possible systematic time shifts in the longAGILE event lists could be, in principle,

affecting phasing and must be checked. For example, a hypothetical constant

discrepancy ofterr of the on-board time with respect to UTC would result in a phase

shift Φerr = (terrmodP)/P, whereP is the pulsar period. The availability of radio

observations bracketing the time span of the gamma-ray observations (or of X-ray

observations very close to the gamma-ray observations for the case of Geminga)
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also allowed us to perform accurate phasing of multi-wavelength light curves. In

doing so, the radio ephemeris reference epochs were set to the main peak of the

radio light curves at phaseΦpeak= 0. In view of Equations 2.11 and 2.12, this is

achieved by settingΦ0 =−ν ∑N
k=1bk (typically, Φ0 < 10−2).

Standard folding without the∆R term implies radio-gamma period

discrepancies one order of magnitude higher (∆PCrab∼ 4×10−11 s). Moreover, it

also lowers the statistical significance of the detection and effective time resolution

of the light curve. For the Crab, the value of the Pearsonsχ2 statistic introduced

in Section 2.5.2 (we quote reducedχ2 values) goes from∼ 6.3 (when using the

∆R term) down to∼ 4.2 (ignoring the∆R term) when folding the data into a 50-

bin light curve (see Figure 4). Obviously, ignoring timing noise in the folding

process would yield discrepancies (and light curve smearing) that are expected to

grow when considering a longer observing time span. Thus, the contribution of

timing noise should be considered both in high-resolution timing analysis and in

searching for new gamma-ray pulsars.
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Chapter 3

The New AGILE Sub-Millisecond
View on Gamma-Ray Pulsars

In this Chapter, the first new results fromAGILE pulsar observations are presented.

These results, on the known gamma-ray pulsars (see next Section), were published

in [173], to which I gave major contributions in the calibration and data analysis.

The study of the Crab pulsar is completed with the observations performed with the

MAGIC telescope. I participated to the last two works on the modeling of the Crab

pulsar spectrum at the VHEs byMAGIC: [146, 147]. In particular, I contributed

to the analysis of theFermi-LAT publicly available data that provide the spectral

points below theMAGIC energy range. Finally, pulsars B1055–52 (J1057–5226)

and B1951+32 (J1952+3252), which belonged to theAGILE Guest Observer (GO)

Program, have been most recently analyzed and the results presented here have not

been published yet, but will appear in theAGILE Catalog of Gamma-Ray Pulsars

that is in preparation. The Chapter, as well as this Thesis in general, concentrates

on the results obtained by theAGILE satellite, as I mainly worked on proprietary

data from theAGILE Team, but the same sources and some of the phenomena have

been observed byFermi-LAT as well. I do not exploit theFermi-LAT observations,

but notes and references will be given on them as well.

3.1 The Gamma-Ray Pulsars beforeAGILE

Among the∼ 1800known rotation-powered pulsars, mainly observed in the radio

band, seven objects had been identified as gamma-ray emitters before 2007: Vela

(B0833–45), Crab (B0531+21), Geminga (J0633+1746), B1706–44, B1509–58,

B1055–52 and B1951+32 (see Section 1.5 and [216]. In addition, B1046–58 [114],

B0656+14 [184] and J0218+4232 [128, 127] were reported with lower confidence
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Figure 3.1 The seven RPPs firmly identified in gamma-rays beforeAGILE.

(probability of periodic signal occurring by chance in gamma-rays of∼ 10−4).

In spite of the paucity of pulsars identifications, gamma-ray observations were

already used as a a valuable tool for studying particle acceleration sites and emission

mechanisms in the magnetosphere of the spin-powered pulsars.

Spin-powered pulsars were the only class of Galactic sources firmly identified

by CGRO/EGRET. It was thought that some of the unidentified gamma-ray sources

would turn out to be associated to young and energetic radio pulsars discovered

in subsequent radio surveys [149, 123]. In fact, several unidentified gamma-

ray sources had characteristics similar to those of the known gamma-ray pulsars

(hard spectrum with high energy cutoff, no variability, possible X-ray counterparts

with thermal/non-thermal component, no prominent optical counterpart), but they

lacked a radio counterpart as well as a SNR and/or PWN association. Radio-

quiet, Geminga-like objects had also been invoked but no identification had been

confirmed at the time.

3.2 The Advent ofAGILE

With about ten years since the last gamma-ray observations of pulsars, the

improved time resolution ofAGILEand the much longer observation campaigns, the

opportunity arose to search for new features in the shape of the light curves of the

known gamma-ray pulsars and to investigate the possible occurrence of variations

in the gamma-ray pulsed flux parameters.

After nine months of observations in the frame of the SVP (2007 July -

November, see Section 2.4) and of Scientific Pointing Program AO 1 (pointings 1 -

7, 2007 December 1 – 2008 April 10),AGILE reached∼ 10,000pulsed counts from
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the Vela pulsar and an exposure of the Vela region≥ 109 cm2 s atE > 100MeV,

comparable to that of the nine-year lifetime ofEGRET(althoughAGILE data had a

higher residual particle background). An even better exposure (1.5×109 cm2 s) was

reached in the core region of the Galactic Plane (l = 310◦−340◦), corresponding to

the Southern Hemisphere. From PSR B1706–44,AGILE observed∼ 2400pulsed

counts up to April 2008, a factor 1.5 better counts statistics thanEGRETfor this

source. For Crab and Geminga, an exposure level comparable with that obtained

by EGRETwas reached at the end of AO 1 pointing number 15 in the Anti-Center

region (October 2008).

The following Sections will illustrate in detail howAGILEobservations started

to assess new features in the gamma-ray pulsars light curves. Narrower and better

resolved main peaks were revealed, together with previously unknown secondary

features, to be confirmed when more counts statistics would be available.AGILE

allowed for a long monitoring of gamma-ray pulsar light curves shapes. We

carefully looked for possible light curve variations by KS tests (two-dimensional

Kolmogorof-Smirnoff test [KS]; [169, 74]). For each pulsar, different gamma-ray

light curves (with 10, 20 and 40 bins) were obtained grouping contiguous data sets

and requiring at least 30 counts bin−1 (300-1000 counts for each light curve). Each

light curve was compared by KS test with each other and with the average shape

corresponding to the entire data set. No pulse shape variation was detected with a

significance> 3σ on timescales ranging from 1 day (Vela) to few months (Crab,

Geminga and PSR B1706–44).

3.3 The Vela Pulsar

The first pulsar to be discovered in the Southern hemisphere [132], the Vela pulsar

(or PSR J0835–4510) is located at the center of the Vela SNR and it contributed

to the identification of pulsars as the aftermath of the death of massive stars in

the supernova explosion (SNE) and the result of their core collapse. Its age,104

years, makes it a bridge pulsar between the very young (e.g. Crab) gamma-ray

emitting pulsars and the old ones (e.g. PSR J1057-5226). Its emission at different

wavelengths seems to be the superposition of different spectral components. Ten

years after its discovery in the radio band, it was observed in the optical [225]. It

was subsequently detected also at UV, X and gamma-rays. The Vela pulsar is the

brightest persistent gamma-ray source of the sky. Its gamma-ray spectral properties,

first highlighted withEGRET [112], make it more similar to the old gamma-ray
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Figure 3.2 Vela pulsar light-curves (P∼ 89.3 ms) for different energy bands (E < 100MeV,
40 bins, resolution:∼ 2.2 ms;E > 100MeV, 100 bins, resolution:∼ 0.9 ms;E > 1 GeV,
20 bins, resolution:∼ 4.5 ms; G+L class events) obtained by integrating all available
post-glitch data (5432054561 MJD). The radio ephemeris and the 8192 bins light-curve
(bottom panel) are obtained by the analysis of∼ 4100ToAs observed at Mt. Pleasant Radio
Observatory in Tasmania (radio observation interval5415754548MJD).
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pulsars than to the older ones.

The Vela light curves for different energy bands are shown in Figure 3.2. A

Gaussian fit to the Vela main peak (P1) atE > 100 MeV provides a FWHM of

0.018± 0.002, centered at the rotational phaseφ = 0.1339± 0.0007, consistent

with the EGRETobservations [112]. The apex of the main peak is resolved by

AGILE with a width of∼ 0.8 ms and its apparent trail (φ = 0.13−0.3) could be

due to the occurrence of one or more secondary peaks. In fact, marginal evidence

of a relatively narrow lower peak (P3) atφ ∼ 0.25 is present in theE < 100MeV

(3.3σ fluctuation with respect to the average interpulse rate) and in theE > 1 GeV

light curves. P3 is located at the phase of the optical peak 1 [225] and also at the

phase of a bump predicted in a TPC model [69], due to overlapping field lines from

opposite poles near the light cylinder. In the outer gap model, this bump is the first

peak of the light curve and also comes from very near the light cylinder. The peak

at φ = 0.5− 0.6 (P2) in theE > 100 MeV light curve cannot be satisfactorily fit

with a single Gaussian or a Lorentzian curve (χ2
r > 3), due to the possible presence

of a bump atφ ∼ 0.5 (P2a). The phase separation between the main gamma-ray

peaks∆φ = 0.426± 0.002, as well as that between the gamma-ray and the radio

peak, are unchanged since theEGRETobservations [112, 183]. In theE < 100

MeV band a secondary peak+valley structure (P4) appears atφ ∼ 0.9 (∼ 4σ level).

It is worth noting its symmetric position around the radio peak with respect to the

main peak (P1) and a possible correlation of P4 with features seen in the X-ray light

curves [151]; P4 also coincides with peak number 3 of theRXTelight curve [91].

Fermi-LAT observations [2] confirmed the presence of the structure in the second

peak and also confirm the presence of a third peak (P3) in between P1 and P2, with

a strong dependence on the energy range.

3.3.1 The Vela glitch of August 2007

During earlyAGILE observations, Vela experienced a weak glitch clearly detected

in radio as a discontinuity in the pulsars spin parameters.

What is a Glitch

Glitches (see Section 1.1.4) are small (∆ν/ν ∼ 10−9−10−6) and sudden (<∼1 day)

discontinuous increases in the pulsar frequency, often followed by a recovery (1100

days) to the pre-glitch frequency. About∼ 6% of pulsars are known to have shown

glitches (see for example [73]), with a higher incidence of events in younger pulsars.
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This phenomenon is potentially a very promising tool for probing the physics of the

neutron star interiors [144]. Although no general consensus has been reached to

date about the origin of the glitches, many models are based on the exchange of

angular momentum between the superfluid neutron star core and its normal, solid,

crust [191, 194, 20, 19].

Glitches in Gamma-Rays

This angular momentum transfer may excitestarquakewaves, propagating towards

the neutron star surface. Since the magnetic field frozen in the crust is shaken, the

resulting oscillating electro-magnetic potential could generate strong electric fields

parallel to the magnetic field, which in turn would accelerate particles to relativistic

energies, possibly emitting a burst of high-energy radiation.

The Episode of August 2007

Figure 3.3 Unfolded Vela pulsar light-curve (4.5 min bin size,E > 50MeV, G-class events).
Dashed lines bracket glitch epoch uncertainty range (54313±3 MJD). A > 5σ count excess
at∼ 54312.693MJD could be associated to gamma-ray bursting emission from the glitch.

Since the first observation of a pulsar glitch in 1969 [182], Vela has shown

∼ 10 major glitches. Due to its large field of view, the quest for possible gamma-

ray bursting behavior due to a glitch is then an effective opportunity forAGILE.

Despite the fact that the August 2007 glitch was a weak one (∆ν/ν ∼ 10−9), it was

worthwhile to search for a signal in theAGILE data. The characteristic energy of

a pulsar glitch can be roughly estimated from the associated pulsar frequency jump
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Eglitch = ∆Erot = 4π2Iν∆ν , whereI (∼ 1045 g cm2) is the neutron star moment of

inertia. The corresponding expected gamma-ray counts would be:

Cglitch
γ = η

EglitchAe f f

4πd2Eγ
' 1011η

∆ν
ν

(3.1)

where η = [0,1] is the unknown conversion efficiency of the glitch energy to

gamma-ray emission,d (∼ 0.3 kpc) is the pulsar distance,Eγ (∼ 300MeV) is the

average gamma-ray photon energy assuming a spectral photon indexΓ = −2, and

Ae f f is theAGILE effective area.

Even in the virtual limit assumption that the entire glitch energy could be

driven into gamma-ray emission, a weak glitch with a frequency shift of∆ν/ν =

1.3× 10−9, as that observed in August 2007, cannot produce a strong signal

(Cglitch
γ < 100− 200 counts), if the core fluence is spread in∼ 1 day. In fact,

no excess on daily timescales was detected, although for much shorter timescales

of 3− 6 minutes a> 5σ excess (∼ 15 counts) in the photon counts is seen at

∼ 54,312.693MJD (see Figure 3.3).

On the other hand, stronger Vela glitches, such as the one of 1988 Christmas

[157], with a frequency shift of∆ν/ν = 2× 10−6 could in principle produce

more significant transient gamma-ray emission. Typical count-rate from Vela is

∼ 100−200counts day−1, then a fluence of≤ 1000counts in∼ 1 day or less from

the hypothetical gamma-ray glitch burst should be easily detectable. According to

Equation 3.1 such a flux could arise from a glitch with∆ν/ν ∼ 10−7 (typical Vela

glitch size), converting a relatively small fraction (η ∼ 0.1) of its energy in gamma-

rays. The chance occurrence of a strong Vela glitch in theAGILE field of view over

three years of mission operations is of∼ 20%.

3.3.2 Other Glitches

Other pulsars are known to glitch frequently and are observable in gamma-rays. Up

to now no other glitch has been observed to emit in gamma-rays. [72] published a

comprehensive study of the glitches of 102 pulsars observed since 1978 analyzing

the Jodrell Bank database on the monitoring of 700 pulsars. They were able to give

some insights and a phenomenological characterization of the glitches, together

with a wealth of candidates in the northern sky forAGILE observations. A similar

work on a smaller sample had been compiled from the Urumqi Observatory in

China [226], and from the HartRAO in South Africa, for the Vela pulsar [40]. A

monitoring program of glitches is active in a number of radio telescopes, including
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the Hobart telescope in Tasmania, that does the monitoring of the Vela pulsar for

theAGILE observations. Alerts are sent to the gamma-ray telescopes when a glitch

is observed.

3.4 The Crab Pulsar

Figure 3.4 Crab pulsar light curves (P∼ 33.1 ms) for different energy bands (E > 100MeV,
50 bins, resolution:∼ 0.7 ms;E > 500MeV, 40 bins, resolution:∼ 0.8 ms; G class events)
obtained by integrating all available data. The X-ray (1860keV) SuperAGILE50 bins light-
curve is obtained from a∼ 41 ks observation taken at∼ 54361MJD. The radio ephemeris
and the 2048 bins light curve (bottom panel) are obtained by the analysis of 334 ToAs
observed by Jodrell Bank and Nançay radio telescopes (observation interval5407854566
MJD).

The Crab pulsar was not the first to be discovered, but it definitely has been

one of the best and most studied. Its age is very well known, since its SNE was

recorded by Chinese astronomers in 1054 a.C.. Being so young, and thus bright,
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and so close, the Crab has widely been used as a prototype and a calibration star,

although recent developments proved it far from stable and standard (see Section

3.4.1)

The Crab light curve forE > 100 MeV (Figure 3.4) shows a previously

unknown broad feature atφ = 0.65− 0.8 (P3), in addition to the main peaks

P1 and P2 (φP1 = 0.999± 0.002, FWHM 0.054± 0.005; φP2 = 0.382± 0.008,

FWHM 0.14± 0.04). The probability of P3 of being a background fluctuation is

of ∼ 10−4 (3.7σ ). P2 could be possibly resolved into two sub-peaks in future

longer observations. P3 is coincident with the feature HFC2 that appears in the

radio profile above 4 GHz. [161] suggest that this peak may come from a lower

emission altitude, near the polar cap. P3 is actually at a phase that could plausibly

come from low altitude cascades in the slot gap model [164], the pairs from which

may be also causing the HFC2 radio component(s), while P1 and P2 come from

the high-altitude slot gap.Fermi-LAT subsequent observations [8], which showed

extremely well resolved multi-wavelength light curves, present the canonical two

peaks. They cannot claim the presence of P3, as they too observe it at a non

significant2.3σ level. The fact thatAGILEand possibly alsoMAGIC [146] observe

this same structure at the same frequency, constitutes at least an indication in favor

of its presence, possibly of the variable kind (see Section 4.5.1).

According to the observations ofSAS-2, COS BandEGRET, the ratio P2/P1

of the main peak intensities could present a variability pattern (possibly ascribed

to the nutation of the neutron star) that can be fit with a sinusoid with a period

of ∼ 13.5 years [110, 183] although this is not required byEGRET data alone

[218]. We observed a P2/P1 intensity ratio0.66± 0.10 in good agreement with

the value of∼ 0.59 predicted for54350 MJD (for the energy range 50 MeV

- 3 GeV). Unfortunately, our P2/P1 value is similar -within the errors- to the

EGRETdetermination (∼ 0.5): then an unambiguous assessment of the origin of

this possible phenomenology will require measurements close to the epoch (56150

MJD) corresponding to the predicted maximum or the intensity ratio P2/P1 (∼ 1.4).

Variability should also be invoked to explain the possible detection of P3, which

was never seen in theEGRETdatabase in spite of an overall exposure comparable to

that reached byAGILEup to April 2008. We note that the main peak intensity ratios

computed for Vela (P2/P1= 0.91±0.07) and Geminga (P2/P1= 0.8±0.1) do not

yield evidence of significant variations with respect to past observations [183].
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3.4.1 Gamma-Ray Flares Coming from the Crab Region

The discovery by theAGILE satellite of a strong gamma-ray flare above 100 MeV

from the Crab Nebula in September 2010 [210, 209] and the confirmation by the

Fermi-LAT [41, 4] started a new era of investigation of the Crab Nebula and of

the particle acceleration processes in general [224]. Three substantial gamma-ray

flaring episodes from the Crab Nebula have been reported until March 2011 [209, 4].

The flaring activity was detected only in the gamma-ray energy range 100 MeV - a

few GeV, and has been attributed to transient emission in the inner Nebula due to the

lack of any variation in the pulsed (radio and high-energy) signal of the Crab pulsar

or of any detectable alternative counterpart (e.g., [95, 54]). While a more detailed

discussion on these episodes is presented in Chapter 6, here a brief description is

provided of possible remote connections of this behavior with activity from the

pulsar itself.

A Connection to the Timing Noise?

Figure 3.5 In the upper panel it is shown the flux of theAGILE observations of the Crab
region from July 2007 to October 2010. In the bottom panel we show the corresponding
residuals (see Section 2.2.2) of the pulsar timing which show considerable timing noise.

The origin of the flares does not seem to be in the pulsar itself. Still, the energy

of the Nebula has its origin in the pulsar and so may the flaring episodes. No

variability was observed in the radio domain, or at other wavelengths, coming from

the pulsar. We analyzed the general behavior of the pulsar during this episode and

in a longer time span.
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Figure 3.6 Same as the Figure 3.5, but with a close-up on the epochs of the flares, showing
that the timing noise at both the times presents a growing trend.
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The Crab pulsar is known to present strong timing noise (see Figure 3.5). The

timing noise (see Section 2.2.3) is not an uncommon feature in young pulsars, but

its origin is still debated and generally not understood. In the framework that flares

as those recently observed byAGILE andFermi-LAT are, too, not uncommon, we

put together the long time timing noise information that we have collected for the

Crab in three years ofAGILE observations, and confronted them with the episodes

of flaring variability observed up to now.

Figures 3.5 and 3.6 show the general trend in the timing noise and the

corresponding gamma-ray behavior of the source. It can be noted that both times,

when gamma-ray activity exploded, the timing noise showed an upwards trend. This

association cannot be conclusive, but it makes it worth to continue following this

line of investigation in the future efforts to explain the flaring activity of the Crab.

3.5 MAGIC observations of the Crab Pulsar

The first pulsar ever to be observed at energies above some tens of GeVs, the

Crab confirms its peculiar nature after having been observed by the Cherenkov

telescopes:MAGIC [18] andVeritas[223].

In spite of several attempts, no pulsar had ever been observed at energies

E > 60 GeV, where the Earth-based Cherenkov telescopes are the most sensitive

instruments. This suggested a spectral cutoff; that is, that the pulsars emission

drops off sharply, between a few GeVs and a few tens of GeVs. The Crab pulsar

is one of the best candidates for studying such a cutoff. Its spectrum had been

measured byEGRET [216] up to E ≈ 5 GeV without a clear cutoff being seen.

Earlier observations fromMAGIC [17] revealed a hint of pulsed emission at the

2.9 σ level above 60 GeV . In order to verify this result, a new trigger system was

developed and installed, that lowered the threshold ofMAGIC from ∼ 50 GeV to

25 GeV [188].

The Crab pulsar was observed between October 2007 and February 2008: 22.3

hours of quality data where obtained and pulsed emission was detected above 25

GeV. The pulsed signal had an overall significance of6.4σ with 8500±1330signal

events. TheE > 25 GeV profile (see Figure 3.7) showed two pronounced peaks at

phases (with respect to the radio peak assumed to be at phase 0)φ = 0 (P1) and

φ = 0.3−0.4 (P2). These peaks are coincident with those measured by the gamma-

ray satellites (EGRET, AGILE andFermi-LAT) at E > 100MeV, but in theMAGIC

light curve they have similar amplitudes atE > 25 GeV, while P1 is dominant at
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Figure 3.7 Crab pulsar pulsed emission in different energy bands, from [18]. The shaded
areas show the signal regions for P1 and P2. (A) Evidence of an emission (3.4 s) greater
than 60 GeV for P2, measured byMAGIC. (B) Emission≥ 25 GeV, measured byMAGIC.
In the lower panels are the multi-wavelength light curves fromAGILE as appeared in [173].
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lower energies. The progressive ”growth” of P2 with respect to P1 as the energy

increases can be also observed in theAGILE multi-wavelength light curves (Figure

3.4). Using these same data, a small excess (3.4σ ) could be observed above 60

GeV, consistent with previous observations (ref).

3.5.1 Spectral Constraints fromMAGIC observations

For the Crab pulsar, in the energy rangeE = 0.1−5 GeV,EGREThad measured a

power-law spectrum of the kindF(E) ∝ Eα with spectral indexα = 2.022±0.014.

The flux observed byMAGIC at E = 25 GeV was several times lower than a

straightforward extrapolation of theEGRETspectrum. Pulsar emission scenarios

predict a generalized exponential shape for the cutoff , that can be described as

F(E) = AE−α exp[−(E/E0)β ], whereA is a normalized constant,E0 the cutoff

energy andβ measures the steepness of the cutoff. For the conventional cases of

β = 1 (exponential cutoff) andβ = 2 (super-exponential cutoff), the data yielded

E0 = 17.7± 2.8stat± 5.0syst GeV (wherestat represents thestatistical error and

syst is the systematic error) andE0 = 23.2± 2.9stat± 6.6syst GeV, respectively.

Leavingβ as a free parameter, the best fit yieldsE0 = 20.4±3.9stat±7.4syst GeV

andβ = 1.2.

From a theoretical point of view, the spectral cutoff is explained as a

combination of the maximum energies that electrons (e) can reach (because of the

balance between acceleration and radiation losses) and the absorption of the emitted

gamma-rays in the magnetosphere. Absorption is controlled by two mechanisms:

(i) magnetice+−e− pair production in the extremely strong magnetic field close to

the pulsar surface and (ii) photon-photone+−e− pair production in dense photon

fields. If, for a young pulsar like the Crab with a magnetic fieldB∼ 1012−1013

G, emission occurs close to the neutron star surface (as in classical polar-cap

models), then magnetic pair- production attenuation provides a characteristic super-

exponential cutoff at relatively low energies; that is, a few GeVs at most (see Section

1.3.1). If, on the other hand, emission occurs farther out in the magnetosphere,

at several stellar radii or close to the light cylinder (as in slot-gap and outer-gap

models, see Section 1.3) , then absorption mainly arising from photon- photon

collisions sets in at higher energies and produces a shallower cutoff (roughly

exponential in shape). In either case, however, the measuredE0 could be intrinsic to

the emitted spectrum and hence would only provide an upper limit to the absorption

strength.
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Equation 3.2 from [31] (a largely model-independent relation derived from

simulations of gamma-ray absorption by magnetic-pair production in rotating

magnetic dipoles) relates the pair-creation cutoff energy,Emax, with the location of

the emission regionr/R0 (R0 is the pulsar radius;r is the distance of the emission

region from the center of the pulsar) for a pulsar with surface magnetic fieldB0 and

periodP:

Emax≈ 0.4
√

P
r

R0
max{1,

0.1Bcrit

B0
(

r
R0)3}GeV (3.2)

The appropriate values for the Crab pulsar areB0 = 8× 1012 G, natural constant

Bcrit = 4.4× 1013 G, andP = 0.033 s (whereBcrit is the critical field that marks

the onset of quantum effects in a magnetized plasma, see also Chapter 5). Using

for Emax the super-exponential cutoff energyE0 = 23.2± 2.9stat± 6.6syst GeV,

derived above forβ = 2 as appropriate for the polar-cap scenario, one obtains

r/R0 > 6.2±0.2stat±0.4syst; that is, the emitting region is located well above the

pulsar surface. This result, however, contradicts the basic tenet of the polar-cap

scenario that particle acceleration and radiation emission occur very close to the

pulsar surface. This inconsistency would rule out the polar-cap scenario for the

Crab pulsar.

MAGIC results therefore favor an outer-gap or slot-gap scenario for the Crab

pulsar. For example, using in Equation 3.2 the value ofE0 that corresponds to

β = 1 (approximately consistent with the outer-gap picture), a high-altitude emitting

region is inferred, which is fully consistent with the assumed scenario. Specific

recent outer-gap and slot-gap predictions are compared withMAGIC data in Figure

3.8. Although the former can provide emission of photons of energies as high as 25

GeV and hence explain the VHE gamma-ray data, the latter cannot. Thus, current

outer-gap models seem preferred in explainingMAGIC measurement. Lastly, these

present measurements reveal a trend ofP2/P1 increasing with energy: it is< 0.5

at 100 MeV,≈ 1 at 25 GeV, and> 1 at 60 GeV (Figure 3.7). This trend provides

valuable information for theoretical studies that will further constrain the location

of the emission region in the Crab pulsars magnetosphere.

3.5.2 New Results fromMAGIC

The first MAGIC observations of the Crab pulsar only comprised data up to

February 2008. In winter 2008/09, the Crab pulsar was observed again with

MAGIC using the sum trigger. In August 2008,Fermi-LAT became operational and

measured the spectra of gamma-ray pulsars up to a few tens of GeVs [7]. All the
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Figure 3.8 Crab pulsar spectral cutoff, from [18]. The black points and triangles on the left
represent flux measurements fromEGRETandCOMPTEL. The arrows on the right denote
upper limits from various previous experiments. A joint fit was performed of a function
[F(E) = AE−α exp(−(E/E0)β )] to theMAGIC, EGRETandCOMPTELdata. The figure
shows all three fitted functions forβ = 1 (red line) andβ = 2 (blue line) and the best fit
β = 1.2 (green line). The black line indicates the energy range, the flux and the statistical
error ofMAGIC measurement. The yellow band illustrates the joint systematic error of all
three solutions. The measurement is compared with three current pulsar models, a polar cap
model, a slot-gap model and an outer gap model.
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energy spectra are consistent with a power law with an exponential cutoff, though

statistical uncertainties above 10 GeV are rather large: for some of the pulsars, the

phase averaged spectrum deviates from the exponential cutoff but phase-resolved

analyses revealed that the spectrum of each small pulse-phase interval is still

consistent with the exponential cutoff. The cutoff energies are typically between

1 GeV and 4 GeV. TheseFermi-LAT measurements also disfavor the polar cap

model and support the outer gap and the slot gap models [7].

However, the cutoff energy of the Crab pulsar determined withFermi-LAT

under the exponential cutoff assumption is∼ 6 GeV, an unlikely value for the

signal above 25 GeV detected byMAGIC. In order to verify the exponential

cutoff spectrum, a precise comparison of the energy spectra measured by the two

instruments is needed. The recent detection of the Crab pulsar above 100 GeV by

theVERITASCollaboration [223] has shown that indeed the energy spectrum above

the break is not consistent with an exponential cutoff but that it is better described by

a broken power law [223]. It is, however, not clear whether the spectrum continues

as a power law after the break or there is another component above 100 GeV in

addition to the exponential cutoff spectrum because of missing flux measurements

in the intermediate energy range from 25 GeV to 100 GeV.

Figure 3.9 Energy spectrum of the Crab pulsar for P1+ P2 from [146]. The black solid line
and the dots are obtained from the publicFermi-LAT-LAT, while the red points denote the
MAGIC measurements. The pink line and the butterfly shape indicate the power law fit to
theMAGIC data and its statistical uncertainty. The gray shade with a black line and open
diamonds show theVERITASmeasurements [223]. The dotted lines show the result of the
combined fit above 5 GeV.

The energy spectra of the Crab pulsar were computed based on the detected
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Figure 3.10 Energy spectrum of the Crab pulsar (total pulse) from [146]. The black line and
dots are obtained from a likelihood analysis of the publicFermi-LATdata, while the green
line represents the spectrum reported in [8]

excess events found in P1 and P2, using the standardMAGIC software. The

combined spectrum of P1 + P2 is consistent with a power law, which can be

described using the following formula:

d3F(E)
dEdAdt

= F30(E/30GeV)−Γ2 (3.3)

where F30 = (14.9± 2.9stat± 9.6syst)× 10−9 cm−2 s−1 TeV−1 and Γ2 = 3.4±
0.5stat± 0.3syst were obtained as best fit parameters. This spectrum would also

smoothly connect to theVERITASmeasurements above 100 GeV. Results are shown

in Figure 3.9. Figure 3.9 clearly shows the deviation of theMAGIC spectra with

respect to the extrapolation of the exponential cutoff spectra determined byFermi-

LAT, which is consistent with our statistical analysis.

To get a better estimate of the power law index for the higher energies,Fermi-

LAT data points above 5 GeV andMAGIC data points are combined and fitted by a

power law
d3F(E)
dEdAdt

= F10(E/10GeV)−Γ. (3.4)

The Fermi-LAT points were obtained using two methods: the likelihood analysis

for each energy interval assuming a power law, and the pulsed counts divided by

the exposure which gives the pulsed flux. Even in this case, as Figure 3.10 shows,

the exponential cutoff atE ∼ 6 GeV, suggested byFermi-LAT observations alone,

seems to be hardly applicable: best fit parameters beingF10 = (3.0±0.2)×10−7
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Figure 3.11 Energy spectrum of the Crab pulsar (total pulse). The dots are obtained from
a pulsed analysis of the publicFermi-LAT data, and the last point represents theMAGIC
spectral point from [18]

cm−2 s−1 TeV−1 andΓ = 3.0± 0.1. The second method, that I applied, was the

calculation of the pulsed flux, as explained in Section 2.5. The results are visible

in Figure 3.11 and the resulting cutoff obtained wasEc = 11.74± 2.7 GeV, still

compatible with theFermi-LAT results at2σ , but more considerate of theMAGIC

observations.

3.5.3 MAGIC Stereo Observations

Most recently, 73 h of stereoscopic data taken with bothMAGIC telescopes were

used to investigate the very high energy (VHE) gamma-ray emission of the Crab

pulsar [147]. These Stereo data show a pulsed signal at pulse-shape-independent

confidence levels of6.4− 8.6σ . Emission is found in the energy range from 50

to 400 GeV and in both the main pulse (P1) and interpulse (P2) phase regions.

We provide the widest spectra to date of the VHE components of both peaks,

extending down to the energy range of satellite-borne observatories. The improved

precision and background rejection of the stereoscopic technique leads to relatively

low systematic uncertainties and allows the cross-check of the correctness of each

spectral point of the pulsar by comparison with the corresponding (strong and well-

known) Crab Nebula flux.

Our findings are in agreement with the detection above 100 GeV recently

reported byVERITAS, including the P1+P2 flux, photon index, and pulse shape

parameters. The spectra of both P1 and P2 are compatible with power laws of

photon indices4.0± 0.8 (P1) and3.42± 0.26 (P2), respectively. The difference
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in the indices is reflected in the observed P1/P2 ratio of0.54± 0.12. The VHE

emission, still under careful investigation and revision of the classical models, can

be tentatively understood within a framework where this component is produced by

inverse Compton scattering of secondary and tertiarye± pairs on IR-UV photons.

But this new energy range for pulsar astronomy is still processing its first steps.

3.6 The Other EGRET Pulsars

3.6.1 Geminga

Figure 3.12 Geminga light curves (P ∼ 237.1 ms) for different energy bands (E < 100
MeV, 20 bins, resolution:∼ 11.8 ms;E > 100MeV, 100 bins, resolution:∼ 2.4 ms;E > 1
GeV, 20 bins, resolution:∼ 11.8 ms; G class events). The X-ray ephemeris and the18
keV 40 bins light curve (bottom panel) are obtained by the analysis ofXMM-Newtondata
(observation interval52369−54534MJD).

The Geminga pulsar is the second brightest non-variable GeV gamma-ray
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source in the sky and the first representative of a population of radio-quiet gamma-

ray pulsars. Since its discovery as a gamma-ray source by SAS-2, more than thirty

years ago [75], Geminga has been alternatively considered as a unique object or as

the prototype of a population of hidden dead stars.Fermi-LAT has now settled this

question with the discovery [6] of a substantial population of potentially radio-quiet

pulsars, of which Geminga was indeed the first, and for long time the only, example.

Geminga shows anE > 100 MeV light curve (Figure 3.12) with properties

similar to those of Vela. Apart form the major peaks P1 (φ = 0.999± 0.002,

FWHM 0.062±0.008) and P2 (with apexφ = 0.507±0.004, FWHM 0.08±0.01),

secondary peaks are seen trailing P1 and leading P2: the main peak’s P2 leading

trail (φ = 0.8−1) could possibly be associated to unresolved multiple peaks while

P1 displays a ”bump” atφ ∼ 0.55− 0.6. P1 seems to be characterized by a

double structure: a fit with a simple Gaussian yieldsχ2
r ∼ 1.2, to be compared

with a double Gaussian model providingχ2
r < 1. This feature seems still present

even considering different observation blocks separately. The main-peak separation

(∆φ = 0.508±0.007at E > 100MeV) is greater than the value obtained for Vela

and it decreases slightly with energy. The210keV X-ray light-curve shows a peak

(P3) in correspondence with a possible excess in the hard gamma-ray band and a

broad top-hat shaped feature partially overlapping in phase with P1.

3.6.2 B1706–44

TheAGILE light curves of PSR B 1706–44 are shown in Figure 3.13. The broad-

band light-curve (E > 30 MeV) clearly shows two peaks (φP1 = 0.211± 0.007,

φP2 = 0.448± 0.005) bracketing considerable bridge emission (contributing to

> 50% of the pulsed counts) while in the0.11 GeV range the peaks cannot be

discerned from the bridge emission and the pulsar profile presents an unresolved

broad (∆φ = 0.3−0.4) single peak. The same distinction into two peaks was later

on adopted also in theFermi-LAT modeling of PSR B 1706–44 light curves [10].

PSR B 1706–44 is a young (∼ 2×104 yr) and energetic (3.4×1036 erg s−1) 102.5

ms pulsar [109] with emission properties similar to Vela [34]. Double peaked PSR

B 1706–44 is then in fact Vela-like not only energetically, but also with respect to

the offset between the maxima of the high energy and the radio profiles, with neither

of the two gamma-ray narrow pulses aligned to the radio peak.
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Figure 3.13 PSR B1706–44 light-curves (P∼ 102.5 ms) for different energy bands (E > 30
MeV, G class events, 40 bins, resolution:∼ 2.6 ms;0.1 < E < 1 GeV, G+L class events, 20
bins, resolution:∼ 5.1 ms;E > 1 GeV, G+L class events, 10 bins, resolution:∼ 10.2 ms)
obtained by integrating all available data. The radio ephemeris and the 1024 bins light curve
(bottom panel) are obtained by the analysis of 20 ToAs observed by Parkes radio telescope
(observation interval 54220-54562 MJD).
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Figure 3.14 PSR B1055-52 light curves (P∼ 197ms) forE > 100MeV, G class events, 50
bins, resolution: ms obtained by integrating all available data until . The radio ephemeris
are obtained by the analysis of 51 ToAs observed by Parkes radio telescope (observation
interval 54,22055,363 MJD).

Figure 3.15 PSR B1055-52 light curve (P∼ 197ms) forE < 100MeV, G class events, 50
bins, resolution: ms obtained by integrating all available data until . The radio ephemeris
are obtained by the analysis of 51 ToAs observed by Parkes radio telescope (observation
interval 54,22055,363 MJD).
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3.6.3 PSR B1055–52

PSR B1055–52 is a middle-aged (0.5 Myr) energetic (Ė = 3× 1034 erg s−1)

pulsar which has been detected as a source of pulsed gamma-rays. In their study

of energetic pulsars, [230] singled out PSR B1055–52 for comment since it is

exceptional in having both an interpulse and wide radio components, with the

interpulse (IP) well separated from the main pulse (MP). In general the presence

of an IP is a strong clue to a pulsars geometry, and suggests that a study of the radio

emission of PSR B1055–52 may give insight into the structure of the magnetosphere

and the origin of its gamma-rays.

EGRET revealed that PSR B1055-52 is a pulsed gamma-ray source [217].

Unlike most gamma-ray profiles (but in common with PSR B1706–44), that of PSR

B1055–52 does not show two narrow peaks separated by 0.4–0.5 in phase, but has

a broad gamma-ray profile with possible sub-peaks at the leading and trailing edge

of the profile which peak 0.25 and 0.05 in phase before the radio MP [217]. The

leading side of the profile has also been seen with theCOMPTELdetector (0.7530

MeV), while only the trailing side of the profile is seen above 2 GeV byEGRET,

suggesting a longitude dependent spectral index.Fermi-LAT observations [10]

privilege the possibility of a structured profile, with a non-canonical two-peaked

structure and notable bridge emission (a strong third peak) between the two, all

merged together.

Another feature which makes PSR B1055–52 an interesting source at high

energies is its spin-down age of 0.5 Myr, making PSR B1055–52 one of the oldest

of the known gamma-ray pulsars (see next Chapter). Its period of 0.197 seconds

makes it also the slowest (excluding Geminga). This status as being both an old

young pulsar and, at the same time a young old pulsar (most radio pulsars are over

1 Myr old) suggests that it may possess characteristics of both and give insight

into the link between high-energy production in the outer magnetosphere and radio

emission above the polar cap.

AGILE observations (Figures 3.14 and 3.15) confirm the presence of the broad

gamma-ray profile. Just as PSR B1706–44, this pulsar is an outlier in the usual

classification of gamma-ray pulsed profiles. A larger gap, compared to the typical

sizes for gamma-ray pulsars, could explain this emission and it is indeed expected

for very efficient old gamma-ray pulsars [189]. The outer gap model further predicts

that two caustics are formed at the edges of the gamma-ray beam, which could

account for the sub-structure visible in our data.
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3.6.4 PSR B1951+32

Figure 3.16 PSR B1951+32 light curves (P∼ 102.5 ms) for different energy bands (E > 30
MeV, G class events, 40 bins, resolution:∼ 2.6 ms;0.1 < E < 1 GeV, G+L class events, 20
bins, resolution:∼ 5.1 ms;E > 1 GeV, G+L class events, 10 bins, resolution:∼ 10.2 ms)
obtained by integrating all available data presented in Table 1. The radio ephemeris and the
1024 bins light curve (bottom panel) are obtained by the analysis of 20 ToAs observed by
the Jodrell Bank and Nançay radio telescopes (observation interval 54,22054,562 MJD).

Because of the high timing activity of this pulsar, it was quite difficult to find a

new timing solution for this pulsar when starting from a solution with an epoch just

before the start of our data span. This pulsar presents frequent glitch activity, that

also showed up duringAGILE observations. The glitches are not so strong that any

gamma-ray emission is expected to be detected from them.

The profile observed byAGILE is more similar to theEGRETone [216] than

with Fermi-LAT > 100MeV profile [10]. Given the high noise level of this pulsar,

it is possible that the amplitude of the peaks that we observe (see Figure 3.16) is

partly due to timing noise and micro-glitches, such as are experienced by the pulsar

during the long time span of our observations. It is worth noticing that the multi-

wavelengthFermi-LAT light curves show a sharpening of the peaks widths from

low energies (100< E < 300MeV) up toE > 1 GeV. AGILE observations might

then be probing regions of the magnetosphere different from those that give the

most of the emission atFermi-LAT energies where the beam width is smaller.
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3.7 Conclusions

AGILE observations of the known gamma-ray pulsars already produced a step

forward in the pulsar studies.AGILE new potential relies on the combined pointing

strategy plus sky survey observations. To this is added the capability of analyzing

very long data spans without incurring into smearing effects, due to the application

of the timing noise removal to the gamma-ray analysis. In this way, a very high

resolution is obtained but no smearing in the light curves is produced as an effect of

the long data span, as every rotation is taken into account by the contemporaneous

radio ephemeris.

The gamma-ray light curves appear in all cases more complex than a simple

two peaked profile, which led us to the hypothesis that the emission model is not

simple, as well. More than one region of the magnetosphere can be responsible

for the emission of the different peaks, an indication of which is also the different

hardness of the peaks. It is observed, particularly in the Crab pulsar, that the ratio

between the two peaks heights is inverted as the energy grows and in fact the second

peak is dominant in the VHE band. Models are forced to be revisited, due to

the emission above 100 GeV, which seems to exclude the curvature radiation (see

Section 3.5), but may come from a different process than the standard gamma-ray

emission.
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Chapter 4

The First New Pulsars

The results presented in this chapter mainly pertain to three different works. On the

first one, [172], at the beginning of theAGILE mission, we presented the results

of the discovery of new gamma-ray pulsars withAGILE, concentrating only on

the isolated pulsars and leaving the binary system to subsequent in-depth coverage

(Iacolina et al. in prep.). The closer examination of PSR J2229+6114, the brightest

new pulsar, is specific to this Thesis and is not present in [172].

The analysis of PSR J2022+3842 usingFermi-LAT data was conducted in

the framework of our monitoring activity of new possible candidate gamma-ray

pulsars and in the context of the campaign in search for new pulsar candidates

for the approachingMAGIC observations. We published our first findings as an

Astronomer’s Telegram in Atel3466and are now preparing a more diffuse work,

also includingAGILE data, where the emission of this very energetic pulsar is dealt

with in more detail.

Finally, now that a statistically relevant sample of gamma-ray pulsars is

present, thanks to the observations ofFermi-LAT and AGILE, and since the

modeling of magnetospheric emission models can now make significant advances,

we cautioned the future attempts against the problems on which some models incur

at a fundamental physics theory level [219].

4.1 Where to Look for New Gamma-Ray Pulsars

Although the bulk of the electromagnetic energy output of spin-powered pulsars

is typically expected above 10 MeV, only∼ 0.5% of the radio pulsar population

had clearly been identified in the gamma-ray domain before the advent ofAGILE

and Fermi-LAT [216, 173, 86]. Such meager harvest was to be ascribed to the

relatively low sensitivity of gamma-ray instruments with respect to radio and X-ray
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telescopes. Poor gamma-ray pulsar statistics was a major difficulty in assessing

the dominant mechanism which channels pulsar rotational energy into high-energy

emission as well as understanding the sites where charged particles are accelerated.

The dominant mechanisms and sites of the emission most probably depend

on the rotational periodP and magnetic fieldB of the neutron stars, with the

millisecond pulsars (e.g., [92]) behaving differently from the classical, higher

magnetic field ones. Population synthesis simulations, featuring comprehensive

statistical analysis of diverse models of emission geometry and beaming, yielded

very different numbers of radio-loud and radio-quiet pulsars potentially detectable

as gamma-ray emitters (see e.g., [82]). However, such simulations were poorly

constrained by the source sample available and only a much larger sample of

gamma-ray pulsars could help discriminating different emission models.

The large field of view ofAGILE allowed long uninterrupted observations and

simultaneous monitoring of tens of nearby radio pulsars belonging to the gamma-

ray pulsar region of theP− Ṗ- diagram characterized byB > 2×1011 G and spin-

down energyĖrot > 1.3×1033 erg s−1 [170]. At variance with the behavior at soft

X-ray energies, where the emission is proportional to the rotational energy loss over

the squared distance factor (FX ∝ Ėd−2 , whered is pulsar distance; e.g., [181]), the

expected gamma-ray flux of radio pulsars is directly correlated to the Goldreich-

Julian current/ open field line voltage [46, 89]. It can be estimated according to the

law Fγ ∝
√

Ėd−2 [24, 111], which was known to reasonably fitEGRETpulsars. The

large dispersion of such fit (probably due to different beaming fractions) provides

the minimum/maximum normalization values, allowing a worst/best case approach

for the gamma-ray flux estimates. Following such an approach, we built a sample

of ∼ 100 radio-loud pulsars which were likely to be above theAGILE sensitivity

threshold (Fmin > 2× 10−8 ph cm−2 s−1 at E > 100 MeV). The actual number

of detections will of course still depend upon the emission model geometry and

efficiency.

4.2 The Initial Sample

Top-ranking targets with poorAGILE exposure, well-known pulsars already

deeply investigated at the epoch ofEGRET observations, and sources reserved

to the AGILE Guest Observer Program were excluded from our list which

encompasses 35 gamma-ray pulsar candidates. In ranking order: J0737–3039*,

J1833–1034, J1744–1134, J1740+1000, J1747–2958, J2043+2740, J1730–2304,
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J1513–5908, J1524–5625, J1909–3744*, J1357–6429, J1531–5610, J1809–1917,

J1617–5055, J1803–2137, J1801–2451, J0940–5428, J1549–4848, J1718–3825,

J1824–2452, J1730–3350, J0900–3144*, J1420–6048, J1739–3023, J1751–2857*,

J1804–2717*, J2229+6114, J1105–6107, J1721–2457, J1124–5916, J1722–3712,

J1740–3015, J1823–3106, J1745–3040, J1016–5857 (the asterisk indicates binary

systems). See http://agile.asdc.asi.it for details aboutAGILE Data Policy and

AGILE Team Targets List. A new wealth of candidate gamma-ray pulsars are

awaiting a more detailed analysis and will be collectively published into theAGILE

Catalog of Gamma-Ray Pulsars.

Here only published results about isolated pulsars are presented. Since

gamma-ray pulsar detection must start from an at least approximate knowledge of

recent pulsar ephemeris (see Section 2.5.1), a dedicated pulsar radio monitoring

campaign was undertaken on all these targets. Conservatively, we present here

timing analysis results and detection claims only for pulsars having simultaneous

radio ephemeris for the whole relevantAGILE observing epochs. Our campaign

continues throughout theAGILE mission for most of the targets (accordingly to

their visibility), using two telescopes (Jodrell Bank and Nançay) of the European

Pulsar Timing Array (EPTA), as well as the Parkes radio telescope of The Australia

Telescope National Facility (ATNF).

Pulsar data were collected since the early phases of the mission. Timing

observations suitable for pulsed signal analysis started in 2007 July (at orbit 1146)

after engineering tests on the payload. Here observations are reported of data

collected up to 2008 June 30.

4.3 New Gamma-Ray Pulsars

4.3.1 PSR J2021+3651

The first new pulsar of the post-EGRETera has been detected in the framework

of the AGILE Guest Observer Program. PSR J2021+3651 [87] was discovered

after the end of theCGROmission as a radio pulsar and it was long considered

a likely counterpart of the high-energy gamma-ray source 2CG 075+00= 3EG

J2021+3716= GeV J2020+3658, but it could not be confirmed due to the lack of

a contemporaneous radio pulsar ephemeris to fold the sparse, archival gamma-ray

photons fromEGRET. Gamma-ray pulsations from PSR J2021+3651 was detected

in the 100–1500 MeV range using data from theAGILE satellite gathered over 8
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months, folded on a densely sampled, contemporaneous radio ephemeris obtained

for this purpose at the Green Bank Telescope (GBT).

Pulse-phase-resolved images showed that there was only one dominant source,

AGL J2020.5+3653= PSR J2021+3651, in the region previously containing

confused sources 3EG J2021+3716 and 3EG J2016+3657. The single radio pulse

leads the first gamma-ray peak by0.165± 0.010 cycles. The gamma-ray pulse

consists of two sharp peaks separated by0.47± 0.01 cycles. Its pulse shape is

similar to other gamma-ray pulsars, with two sharp peaks separated by slightly

less than 0.5 cycles. This morphology, as well as the lag between the radio and

first gamma-ray peak, are in accord with simulations of outer-gap accelerators

viewed at large angles from the pulsar rotation axis, which may help to explain its

high gamma-ray efficiency, with respect to pulsars with similarĖ: ηγ = Fd2/Ė ≈
0.18d2

12, whereF is the flux in the 100 MeV - 10 GeV range andd12 is the distance

in units of 12 kpc, as calculated from the electron-density model by [52].

4.3.2 AGILE Team Observations and Results

Table 4.1 lists the emission parameters of the seven pulsars that were first presented

as new gamma-ray detections byAGILE. The resulting radio-aligned light curves

are plotted in Figure 4.1 where for each pulsar the actual bin size and energy range

have been adjusted according to the available statistics and light curve structure.

We note that in all cases radio and gamma-ray timing results are compatible, with

the highest significance frequency detected in gamma rays within the errors of the

radio ephemeris value, considering also the period search resolution. Examples of

the exploration of much larger frequency search grids are shown in Figures 4.2 and

4.4, respectively for PSR J2229+6114, for which the best gamma signal is within

1σ from the radio peak, and for PSR J1824–2452, for which the radio-gamma

frequency discrepancy is comparable with the gamma-ray period search resolution.

Both χ2 statistics andZ2
n/H-test provide comparable detection significances,

except for PSR J2229+6114. TheZ2
n test applied to this pulsar provides slightly

better results than the other statistics (Z2
1 = 39.5,Z2

2 = 45.9 corresponding to a

∼ 6σ detection). Furthermore, we verified that our analysis procedure (potentially

affected by instrument-related systematic errors and biases in events extraction

criteria) does not produce fake detections at a significance level above3σ when

the radio-ephemeris are applied to randomly extractedAGILE data.

Four targets were also firmly detected by the likelihood spatial analysis. It
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is not surprising that spatial detection be missing for weaker targets at the initial

AGILE exposure level. In high-background regions of the Galactic plane, our

pulsed emission search sensitivity can be better than our spatial analysis sensitivity.

Furthermore, timing analysis can be applied to the fullAGILE event list (i.e., G+L

event classes extending up to60◦ from the center of the field of view), while, at

first, spatial analysis was only fully calibrated for the G class events detected within

40◦ from the center of the field of view. However, some of the non-detections in

spatial analysis are, indeed, puzzling. According to Figure 4.1, PSR J2043+2740

has a pulsed flux and light curve very similar to PSR J1513–5908 (note that both

are based on G+L events). Moreover, J2043+2740 is out of the Galactic plane, in

a region well exposed and with low diffuse emission. Thus, it should have been

detected by the image analysis more easily than J1513–5908, which sits in a higher

background region, unless, of course, they have very different spectra.

4.3.3 General Characteristics of the New Pulsars

Pulsars in Table 4.1 are ranked according to their overall detection significance.

Pulsars firmly detected both through timing and spatial analyses are placed

above the line. Pulsars detected through timing analysis alone await longer

simultaneous gamma-ray and radio observations for confirmation and reliable

luminosity estimation. In Table 4.1, the most significant detection is PSR

J2229+6114, which is discussed in more detail in the following Section. PSR

J1513–5908 (B1509–58) was detected byCOMPTELin the 1–10 MeV range, while

EGRETreported [76] only marginal evidence for a weak< 4σ source at∼ 1◦ from

the radio position, with a pulsed emission upper limit of< 58× 10−8 ph cm−2

s−1. A more complete analysis of this pulsar is presented in the next Chapter. PSR

B1821–24 was the first millisecond pulsar to be clearly identified at gamma-ray

energies, after the tentative3.5σ detection of PSR J0218+4232 withEGRET[97],

now confirmed byFermi-LAT observations [7]; it is discussed in Section 4.5.

PSR J1016–5857 stands out in Table 4.1 for its very high efficiency in

converting rotational energy loss into high-energy gamma rays. This may be

ascribed to distance uncertainties, as happened to be the case for the previously

discovered PSR J2021+3651 [87] for which the distance derived from the dispersion

measure is certainly overestimated. Furthermore, we note that the position (l =

284◦.47, b =−0◦.94) and flux of theAGILE gamma-ray source is only marginally

compatible with 3EG 1013–5915, from the unidentified sources of the Third
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Figure 4.1 Background-subtractedE > 100 MeV folded pulse profiles (except for the
E > 50 MeV J1357–6429 light curve) of the pulsars shown in Table 4.1. Events extraction
radius is optimized as a function of energy (see the text). All pulse profiles are obtained
using G event class only except for PSR J1513+5908 and PSR J2043+2740 that have
higher counts statistics because detections are obtained including G+L event class. For
PSR J2229+6114 the histogram of the∼ 75 (G+L) events withE > 1 GeV is also shown.
Absolute timing is performed for each target: the main radio peak (1.4 GHz) corresponds to
phase 0. Possible fluctuations of the dispersion measure over the considered time interval
are not expected to significantly affect phasing results, given the time resolution of the
available gamma-ray light curves.
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EGRETCatalog, for which multiple associations were proposed [94]. The region,

originally covered by the gamma-ray source 2CG 284–00, discovered byCOS-B

[206], is very complex. Other nearby sources, and in particular pulsar PSR J1016–

5819 (not belonging to our sample), could significantly contribute to the high flux

observed byAGILE in this region.

Of the remaining three pulsars, detected only through timing analysis, the most

notable is certainly PSR J2043+2740 which, with an age in excess of one million

years, would be the oldest ordinary (non-recycled) pulsar seen in the gamma-ray

domain. The precise measurements of its flux will yield its luminosity and thus its

efficiency, a parameter of paramount importance for the understanding of gamma-

ray emission as a function of the pulsar age. All pulsars from Table 4.1 have,

at different times, been confirmed as gamma-ray emitters by subsequentFermi-

LAT observations [7] but PSR B1821–24 which was only detected byAGILE in

a restricted interval of time (Section 4.5). PSR J2229+6114 was among the first

to be discovered byFermi-LAT, while it took a longer time to observe the soft

PSR B1509–58 (see Chapter 5) and also PSR J2043+2740.

4.4 PSR J2229+6114

PSR J2229+6114 was discovered as a radio pulsar in 2001 [85]. A gamma ray

source positionally coincident with PSR J2229+6114 ((l ,b) = (106.◦6,2.◦9)) was

possibly detected byCOS-B[232]. Later, theCGROmission observed gamma-ray

emission from this source with bothCOMPTEL[107] andEGRET[94]. EGRET’s

unidentified source 3EG J2227+6122 has been hypothesized to be a pulsar since

the beginning by many authors (e.g. Halpern & Ruderman 1993; Kaaret & Cottam

1996; Yadigaroglu & Romani 1997). In 2001 Halpern et al. first presented an

X-ray, optical and radio study of the error box of theEGRETsource proposing

that only one plausible candidate was to be associated with 3EG J2227+6122: a

highly polarized, flat spectrum, radio shell superposed on a compact non-thermal

X-ray source. Its most likely interpretation, a young pulsar with an associated wind

nebula, was confirmed by subsequent follow-up observations.AGILE was able to

firmly identify PSR J2229+6114 with 3EG J2227+6122.

PSR J2229+6114 hasP = 51.6 ms andṖ = 7.8 ·10−14 s s−1, which imply, in

the standard dipole assumption, estimated spin-down powerĖ = 2.2 ·1037 erg s−1,

magnetic fieldB= 2.0·1012 G and characteristic ageτ = 104 yr. PSR J2229+6114’s

position in the Cygnus region made it one of the most observed targets during AO
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1, and allowed an intense monitoring during the AO 2 phase which concentrated on

the Cygnus region. A specific optimization on the events’ extraction parameters is

performed in order to maximize the signal to noise ratio for the pulsed signal (see

also Section 2.5). The optimal event extraction radius varies as a function of the

photon energy (and thus it is related to the pulsar spectrum) according to the PSF

and the background level ofAGILE. For PSR J2229+6114 the extraction radius used

to optimize the signal to noise ratio is∼ 2◦, which is well belowAGILE’s PSF for

E > 50MeV ( ∼ 5◦).

Figure 4.2 PSR J2229+6114: gamma-ray period search result (period trials vs.χ2 Pearson
statistics). The radio period (vertical line atPAGILE−PRADIO = 0) is 51.64101208(3) ms
(PEPOCH = 54575.5856 MJD). The most significant gamma-ray pulse profile is obtained
for PBest

AGILE = 51.641012085(2), a value within the1σ error on the radio period (vertical
dashed lines).

For PSR J2229+6114AGILE detected pulsed emission (radio/gamma-ray

periods discrepancy≤ 10−11 s, Figure 4.2) The gamma-ray light curve of this

pulsar (detected up to over 1 GeV), featuring just one prominent peak shifted

∼ 180◦ in phase from the radio main peak, is shown in Figure 4.1 and in more

detail in Figure 4.3. It is worth noting that assuming a distance of∼ 3 kpc

inferred by X-ray observations [85] and isotropic emission, the pulsar gamma-ray

efficiency would be∼ 0.5, a factor of 20 higher than that quoted in Table 4.1. In

modern pulsar beaming models (in particular high-altitude models) the assumption

of isotropy in luminosity calculation could be a better approximation in most cases

(see Section 4.7), implying that efficiencies should be increased by roughly an

order of magnitude from those based on the commonly assumed 1 sr beam [227].
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Anyway, precise efficiency measurements await for a better assessment of pulsar

distance, flux, and beam geometry.

Figure 4.3 PSR J2229+6114 light curves (P∼ 51.6 ms) for different energy bands ; G+L
class events obtained by integrating all available data up to june 2009. The radio ephemeris
and the radio light curve (bottom panel) are obtained by the analysis of∼ 4100 ToAs
observed at Jodrell Bank in the UK (radio observation interval54270−54981MJD).

In Figure 4.3 are shown the

multi-wavelength light curves for PSR J2229+6114, in phase with the radio peak

which is assumed to be at phase 0. The reducedχ2 value according to the Pearson’s

statistics for the phase histogram relative to the overall emission above 100 MeV

is 4.35, corresponding to a weighed significance of the detection of> 8σ . The

Z andH tests respectively give a detection significance of> 8σ and5.5σ so that

the chance of a fake detection, of non-pulsed emission results4×10−8, ruling out

the null hypothesis. Peculiarly, this pulsar appears to have only one emission peak,

which is in anti-phase relative to the radio peak. A single peak in the gamma-ray
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profile of a pulsar is not usual, but it can be explained in the framework of all the

emission models, as a function of the viewing geometry.

4.5 PSR J1824–2452 (B1821–24)

Figure 4.4 PSR J1824–2452: gamma-ray period search result. The radio period is
3.0543151208713(1) ms (PEPOCH = 51468 MJD). The most significant gamma-ray
pulse profile is obtained forPBest

AGILE = 3.05431511(1) ms. The corresponding radio-
gamma periods discrepancy<∼10−11 s is comparable to the period search resolution in the
considered data span (54339-54344 MJD).

At variance with all the other targets, the millisecond pulsar J1824–2452 in

the Globular Cluster M28 was detected byAGILE, with good significance (greater

than4σ ) and perfect radio-gamma periods match, only in the time interval 54339–

54344 MJD (Figure 4.4). The main radio peak at 1.4 GHz is coincident with the

broad single peak seen in gamma rays. Only marginal detection was obtained

integrating other observations with comparable exposure or the whole data span.

Noise fluctuations could possibly explain the apparent variability.

Alternatively, although its gamma-ray efficiency and high stability of spin

parameters are compatible with rotation-powered emission, some additional

mechanism disturbing the neutron star magnetosphere in the dense cluster

environment could be invoked to explain the variable gamma-ray phenomenology

of this peculiar pulsar.AGILE timing failures at sub-millisecond level in some

observations (mimicking source variability) cannot be excluded. However, this

seems unlikely, since we verified both timing accuracy and stability at∼ 200 µs
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level with Vela pulsar observations. Confirmation of this tantalizing result about

physical variability will rest on longer monitoring campaigns. An encouraging

finding in this direction is the detection of gamma-ray emission coming from the

globular cluster M28, to which J1824–2452 belongs, in the spatial analysis of

Fermi-LAT data [9]. While no pulsation is found, a diffuse gamma-ray emission

is observed in this and in other globular clusters, reasonably assumed, also based on

its spectral properties, to come from an unresolved population of pulsars.

4.5.1 Variability in Pulsars

While it is not typical of millisecond pulsars (see Section 1.1.4) to show timing

noise, PSR J1824–2452 is an exception, where timing noise has been observed, of

smaller amplitude than what is typically found in young pulsars, and even a small

glitch [48]. However, no direct connection can be drawn between these expressions

of radio impulse variability and the fact that the emission in the gamma-rays appears

variable.

With AGILE, we addressed from the gamma-ray point of view, most of the

variability aspects of pulsars, such as timing noise (see Section 2.5.3), glitches (see

Section 3.3.1) and finally, variable emission of pulsed gamma-rays (see Section

4.5). Up to now only one episode of ”temporary” gamma-ray pulsar has been

observed, also because it is hard to find this kind of emission using a long data

span as it is typically necessary to detect significant gamma-ray emission. A careful

KS (see Section 3.2) investigation of all our candidates will be performed in the

context of theAGILE Pulsar Catalog, where light curve variability on different time

scales or nulling emission could be analyzed.

In general, it is not clear that there should be a direct link between phenomena

happening at the extremes of the electromagnetic spectrum. As highlighted in

Section 4.7, the radio emission does not carry away a significant fraction of the

rotational energy and it is, therefore, subject to different constraints than the gamma-

ray emission. It seems that the timing noise, while influencing the gamma-ray

timing, as well as the radio timing, does not show any specific feature in the gamma-

rays. Glitches, on the other hand, could be observed in gamma-rays as a very

fast and temporary enhancement on the gamma-ray flux (Section 3.3.1), but more

observations are needed to support this theory.

We have also investigated the possibility of gamma-ray emission from Giant

Pulses (GPs). GPs are relatively rare episodes of intense radio outbursts that are
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clearly a special form of pulsar radio emission (e.g. [130, 145]). They are of short

duration: from several microseconds down to few nanoseconds, typically limited

to a part of the profile. Their peak flux densities can exceed thousands (and, in the

case of the Crab pulsar, nearly a million) of times the peak flux density of regular

pulses (the Crab pulsar was actually discovered by observations of its GPs [203]).

GPs are only observed in 11 pulsars and, in fact, they do not seem to strongly

correlate with any particular pulsar property or parameters. They do not seem to

dissipate rotational energy and no correlation has been observed up to now with the

emission in the optical or X-rays. No information was present about the possibility

of gamma-ray emission.

As the Crab pulsar is one of the pulsars that show the GP phenomenon, we

investigated the connection between the presence of the small and not constant third

peak in its gamma-ray light curve (see Section 3.4) and the phase at which typically

GPs are observed in the radio profile of the Crab. It is hard to define a similar

connection unless a specific simultaneous monitoring is done that permits to tag

the GPs and fold the gamma-ray emission in correspondence to these events. Such

a monitoring program is ongoing forAGILE in collaboration with the Medicina

radio telescope in Italy, but a lot of simultaneous data need to be collected to obtain

enough statistics in the gamma-rays. A similar program has been promoted for

the MAGIC telescope using radio observations from the Effelsberg telescope in

Germany. Even in this case, the observations are still in progress.

4.6 Going Further, New Pulsars

The newAGILE andFermi-LAT discoveries have brought up the number of known

gamma-ray pulsars of one order of magnitude. Despite the fact that a big enough

sample as that of radio pulsars is still far from reach, yet 100 pulsars consent to

say something statistically relevant in order to constrain the models of gamma-

ray emission. Taking advantage of the simultaneous presence of two satellites for

gamma-ray astronomy at present times, our purpose is to be alert whenever new

candidates are discovered at other wavelengths and search for them in gamma-rays.

The latest pulsar discovered in X-rays and radio that seemed a good candidate for

gamma-ray emission, was thus immediately analyzed [178] and also proposed for

MAGIC observations.
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4.6.1 PSR J2022+3842

PSR J2022+3842 is a 24 ms radio and X-ray pulsar in the supernova remnant

G76.9+1.0, most recently discovered by [26] in observations performed with the

ChandraX-ray telescope, the GBT, and theRossi X-ray Timing Explorer(RXTE).

The pulsar spin-down rate implies a rotation-powered luminosityĖ = 1.2×1038 erg

s−1, a surface dipole magnetic field strengthBs = 1.0×1012 G, and a characteristic

age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar

known, after the Crab, as well as the most rapidly-rotating young, radio-bright

pulsar known.

Motivated by theChandradiscovery of the point source and possible PWN at

the heart of SNR G76.9+1.0, [26] searched for radio pulsations with the GBT. A

candidate 24 ms periodicity was detected on two days with formal significances of

7σ on MJD 54397 and12σ on MJD 54400. Confirmation observations were carried

out on 2009 May 6 (MJD 54957). The difference in the pulse periods derived at

these epochs gave the first indication of the pulsar spin-down rate and thence its

canonical age, magnetic field strength, and spin-down power.

Additional radio observations were carried out at roughly 3-month intervals to

constrain the pulsar long-term timing behavior. Notably, the pulse periods measured

during and after the confirmation observation differed substantially from those

detected during the two discovery observations made 1.5 years earlier, implying

that a spin glitch of magnitude∆P/P' 1.9× 10−6 had occurred at an unknown

epoch in this interval. The spacing of the radio timing observations together

with apparent timing noise instability in the pulsar rotation on similar timescales

precluded derivation of a phase-connected timing solution. The long-term average

spin-down rate was determined through a least-squares fit to the multi-epoch period

measurements as4.3192(27)× 10−14. This result was consistent with the short-

term X-ray ephemeris derived from anRXTEobservation for a total of 99 ks over

the 8-day span 2010 January 27 - February 4 UT:43064(93)×10−14.

We looked for pulsation for this new, very energetic gamma-ray pulsar

candidate in the publicFermi-LAT data. No pulsation was found using the radio

ephemeris valid on a 512 days time interval (MJD 54957 - 55469), corresponding

to the validity of the radio ephemeris. This can be explained by the fact that the

pulsar timing behavior is irregular during the radio observations, with glitch like

activity, scattering and timing noise which cannot be accounted for by sparse long

time ephemeris [26].
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We thus also tried to fold a smaller interval ofFermi-LAT observations, around

the time of the X-ray observations, which provided a solution that can be more

accurate to describe the timing parameters in a short interval of time close to their

validity interval. With this analysis, we reported a tentative detection of pulsed

gamma-ray emission [178]. The gamma-ray emission was observed inFermi-

LATdata using the X-ray ephemeris provided byRXTEin the 8-days time interval

(MJD 55223 - MJD 55231). Gamma-ray observations were folded in the interval

MJD 55213 - MJD 55241.5σ emission was detected atE > 100 MeV with a

total of 660± 130 pulsed counts (event extraction radius ROI=2◦) at frequency

ν = 41.1730092(4) Hz, and frequency derivativėν = −7.30(4)×10−11, referred

to epoch MJD 55227, within the RXTE ephemeris error. The corresponding

pulsed flux above 100 MeV is2.7(5)× 10−7 ph cm−2 s−1 and the luminosity

is 3.6(6)× 1035 erg s−1 (= 0.03× Ėrot) assuming a distanced = 10 kpc and a

beaming factorf = 1 corresponding to4π sr emission. Extending the interval,

the significance of the detection decreases, as expected due to the fact that the

ephemeris in such a noisy pulsar can only account for the timing behavior in a

restricted time interval.

While a stronger detection, in a longer time span, is expected with a more

complete radio coverage, this pulsar seems to present a hard spectrum, representing

also a promising candidate for VHE observations.

4.7 Constraints to the Models

Since the seminal paper of [205], the emission mechanism of pulsars is associated

to spark gaps, regions where the parallel component of the electric field is so large

that pair production may be copious.

A key issue treated frequently in the literature is the location of the gaps, with

two favored classes of models: a gap close to the star surface (polar cap gap, see

Section 1.3.1), a gap in the vicinity of the speed of light radiusrc = c/ω (outer

gap, see Section 1.3.3). The advantage of the former possibility is that close to the

neutron star the magnetic and electric fields are expected to be orders of magnitude

larger than atrc. On the other hand, as shown originally by [50] and by [105],

photon release at the polar cap does not preserve the energy and angular momentum

budget. This strongly favors models with the gap located atrc (e.g. [47], [189]).

However the double (or more complex) structure of pulsar pulses has generated

new interest for models where both gaps are active (see e.g. [173, 172]). This is
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Figure 4.5 Distribution of the gamma-ray luminosity of the gamma-ray pulsars observed
by AGILE andFermi-LAT as a function of the spin down energy loss. The line indicates
the condition of efficiency=1 for the conversion of the spin down energy into gamma-ray
luminosity. The fact that the efficiency can be larger than 1 is also discussed in [7] and
it is due to the fact that a beaming fraction of4π sr is considered. However, new pulsar
modeling (see e.g. [227]) predicts a very large beaming fraction for the gamma-ray pulsars.

consistent with the observation that the various pulse components in general have

different spectral shape ([2], [177]).

All previous considerations are essentially of little relevance for radio pulsars,

since the fraction of the neutron star rotational energy released in the radio band

is extremely small. The problem of the location of the emission regions becomes

of renewed interest after the observation with theAGILE andFermi satellites of

tens of pulsars in the gamma-ray band (see [173, 172], [7]), since in this band one

observes a sizeable fraction of the spin-down energy (10-100 %, [7], see Figure

4.5). Most of the models for the gamma-ray emission indeed exclude the polar cap

location, on the basis of considerations of gamma-ray absorption (see e.g. [18] and

Section 4.7). Still in some cases a polar cap model is proposed (e.g. [173], [229],

[177]), and in general the region of overall emission is located atr < rc (e.g. slot

gap models: [69], [164], annular gap models: [67]). On the other hand, the wind

models (see e.g. [119]) and new force-free models of the magnetosphere (see [30])

propose that the emission should come from the external magnetosphere, beyond

the rc. From their simulations, [30] propose that the high-energy radiation should

come from a current sheet outside the light cylinder, asymptotically approaching

the split monopole solution outlined by [38]. Geometrically, based on the light

curve modeling, the current sheet inside the light cylinder would not seem to play a
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significant role for high-energy radiation.

Here the Cohen, Treves, Holloway (CTH) argument on the energy - angular

momentum (L/E) budget is recalled and then we explore some consequences of

assuming emission within therc.

4.7.1 The CTH Argument

Let Ṅ(r) be the number of photons of frequencyν released at a cylindrical

coordinater in the unit of time. The energy loss of the system would be

dE
dt

= Ṅhν (4.1)

The angular momentum loss is

dL
dt
≤ Ṅr

hν
c

(4.2)

with the equal sign only if the photons are emitted in an equatorial plane

perpendicularly to the radius. Therefore

dL
dt

/
dE
dt
≤ r

c
. (4.3)

The energy and angular momentum of a rotating sphere areE = 1
2Iω2 and

L = Iω, whereI is the moment of inertia which is supposedly constant. Therefore

dL
dt

/
dE
dt

=
1
ω

. (4.4)

Combining with (3) one obtains

r >
c
ω

. (4.5)

This says that in order to satisfy the balance of angular momentum and energy

loss a single photon has to be released atr > c/ω. The same argument applies

to relativistic particles. Note that in the classical dipole wave solution, as shown

explicitly by [64] the angular and energy loss balance is satisfied.

It is obvious that a model of pulsar emission which prescribes all energy release

at the polar cap is unacceptable, as well as models where the spark gap is located at

r < rc. The same problem does not apply to pulsars in binary systems, pulsar wind

nebulae or blazars, as the jet there is responsible for the dissipation of the excess

angular momentum of the photons.
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4.8 Consequences of the Activation of a Polar-Cap Spark Gap

Models could consider two spark gaps, one at the polar cap and one at the outer

gap, and theE/L balance could be globally preserved. This may occur also in the

case of a continuous emission region (e.g.slot gaps). For consistency, such models

should clarify which is the physical mechanism that warrants that the luminosity

distribution does preserve theE/L balance.

Qualitatively one can make the following argument. If part of the energy is

released atr < rc, there is a local excess of angular momentum which one has to

dispose of. The only solution we can think of is that the excess angular momentum

is transferred to the magnetosphere, which expands to the periphery. The particle

component may generate a relativistic wind, which finally accounts for the angular

momentum excess. The stretching of the magnetic field lines, may be a way

of enhancing the radiation from an external gap, again favoring the globalE/L

balance. The appearance of a sizable polar cap emission could rather induce some

sort of global instability, which, one can argue, will quench the polar cap gap.

In conclusion we expect that the activation of a polar cap gap, if it ever occurs,

should be followed by a) a modification of the relativistic wind, b) enhanced power

from the outer gap, c) a global instability. The three effects may coexist or one

or two may prevail. The alternative, which is simpler and we favor, is that there

is no internal polar gap. The next Chapter presents a scenario where the emission

mechanism seems to originate close to the polar caps but, as it is shown, this can

only constitute an exception to the standard pulsar behavior.
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Chapter 5

High Magnetic Field Pulsars

Despite its lower sensitivity in the GeV band, theGRID on boardAGILE has an

effective area below 200 MeV (∼200 cm2 at 50 MeV) comparable with that of

Fermi-LAT. For this reason, after the advent ofFermi-LAT, we chose to concentrate

the AGILE observations on ”soft” targets. We found a correlation between some

high-magnetic-field pulsars and a cutoff at low energies on their spectral properties.

We investigated this connection in the two pulsars that we have observed with the

lowest high-energy cutoff: PSR B1509–58 (J1513-5908) and PSR J1846–0258. Of

both these works, the first published [177] and the second submitted to ApJ, I have

been the principal investigator.

5.1 PSR B1509–58

PSR B1509–58 was discovered as an X-ray pulsar with theEinsteinsatellite during

an observation of the supernova remnant (SNR) MSH 15-52 [198]. The source

was soon also detected at radio frequencies by [150], with a derived distance

supporting the association with the SNR (d ∼ 5.2 kpc, as calculated from HI

measurements from [79] and in agreement with the most recent distance derived

using the dispersion measure1). With a periodP' 150ms and a period derivative

Ṗ' 1.53×10−12 s s−1, assuming the standard dipole vacuum model, the estimated

spin-down age for this pulsar is 1570 years (among the shortest for radio pulsars)

and its inferred surface magnetic field is one of the highest observed for an ordinary

radio pulsar:B = 3.1×1013 G, as calculated at the pole2. Its rotational energy loss

rate isĖ = 1.8×1037 erg/s.

1see the ATNF Pulsar Catalogue (http://www.atnf.csiro.au/research/pulsar/psrcat/) for the updated distance
measurement derived from the dispersion measure.

2The magnetic field strength at the pole is twice the value quoted in the ATNF Pulsar Catalogue.
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Figure 5.1 An image of the pulsar and its nebula as observed in X-rays by Chandra.

PSR B1509–58 and its nebula have been extensively observed in the X-rays

since the Eighties with theEinsteinandEXOSATsatellites. The detection of pulsed

emission in the hard X-rays dates back to the early Nineties [116] withGinga

in the 2–60 keV energy range. During a 20 yrs-long radio monitoring [136],

PSR B1509–58 has not shown any glitch activity, at variance with the general

behavior of young radio pulsars. The analysis of Livingstone et al. [136], using

radio and X-rays (collected withRossiXTE), yielded a very accurate measurement

of the braking index ofn = 2.839± 0.003, close to the canonical valuen = 3

for braking by magnetic dipole radiation in vacuum alone. Observations with the

ROSAT[220], ASCA[207] andBeppoSAX[160] satellites were performed in the

Nineties, characterizing the spectrum of the pulsed emission and the morphology of

the remnant as possibly due to the presence of several components, interacting via

collimated outflows from the pulsar. The nebula has been extensively observed with

theChandrasatellite [78] and its emission has been found up to the TeV energies,

with CANGAROOfirst [195] and more recently byH.E.S.S.[13].

The young age and the high rotational energy loss rate made this pulsar a

promising target for the first generation of gamma-ray satellites. In fact, the

instruments on boardCGROobserved its pulsation at low gamma-ray energies: up

to E ∼ 700 keV with BATSE[233] andOSSE([221], [155]), and in the 0.75 -

30 MeV band withCOMPTEL[126], but it was not detected with high significance

by EGRET, the instrument operating at the energies from 30 MeV to 30 GeV. This

was remarkable, since all other known gamma-ray pulsars show spectral turnovers
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well above 100 MeV [216]. Harding et al [90] suggested that the break in the

spectrum could be interpreted as due to inhibition of the pair-production caused by

the photon-splitting phenomenon [12]. The photon splitting appears, in the frame

of the polar cap models, in relation with a very high magnetic field. An alternative

explanation is proposed [235] using a three dimensional outer gap model. Zhang

& Cheng propose that the gamma-ray emission is produced by synchrotron-self

Compton radiation above the outer gap.

Ten years after theCGRO, the observation in the gamma-ray band are possible

again with the advent ofAGILE and Fermi-LAT. In particular, despite its lower

sensitivity in the GeV band, theGRID on boardAGILE has an effective area below

100 MeV (∼200 cm2 at 50 MeV) comparable with that ofFermi-LAT. AGILE

obtained the first detection of PSR B1509–58 in theEGRETband [172] confirming

the occurrence of a spectral break, although no precise flux measurements were

possible due to low counts statistics. Soon afterwards,Fermi-LAT also reported its

detection of PSR B1509–58 [1]. Later on we presented the results of a∼ 2.5 yr

monitoring campaign of PSR B1509–58 withAGILE[177], that improved counts

statistics, and therefore light curve characterization, with respect to earlierAGILE

observations. With these observations the spectral energy distribution (SED) at

energiesE < 300 MeV, where the remarkable spectral turnover is observed, can

be assessed.

5.1.1 Gamma-Ray Observations of PSR B1509–58

PSR B1509–58 is within the same region of the sky as the Vela pulsar, an area

to which AGILE devoted a large amount of observing time Gamma-ray photons

for this pulsar were collected and analyzed since July 2007, up to late October

2009 whenAGILE started observing in spinning mode. The largeAGILE effective

area and long observing time (∼ 260 days on target) provided a total exposure

of 3.8× 109 cm2 s (E > 100 MeV) during this 2.5 yr period which gave our

observations a good photon harvest from this pulsar.

Simultaneous radio observations of PSR B1509–58 with the 64 m Parkes

radio telescope in Australia are ongoing since the epoch ofAGILE’s launch (MJD

54220; 2007 April 30), as part of a timing project for the gamma-ray satellites

[231], and cover all ofAGILE’s observations. A total of 47 pulsar time of arrivals

(ToAs) were collected between April 2007 (MJD 54220) and February 2010 (MJD

55233), leading to a r.m.s. of the residuals of900µs, showing the goodness of the
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timing model that allowed accurate pulse phase tagging of the gamma-ray photons.

No glitch was detected in the radio analysis. Strong timing noise was present,

as expected from a young pulsar, and it was accounted for using thef itwaves

technique developed in the framework of the TEMPO2 radio pulsar timing software

[103, 104]. Using the radio ephemeris provided by the Parkes telescope, we

performed the folding of the gamma-ray light curve including the wave terms (see

[173]). An optimized analysis followed, aimed at cross-checking and maximization

of the significance of the detection, including an energy-dependent event extraction

angle around the source position based on the instrument PSF. Only high confidence

gamma-ray photons (G) were used for the timing analysis of this pulsar. The

chi-squared (χ2)-test applied to the 10 bin light curve atE > 30 MeV gave a

detection significance ofσ = 4.8. The unbinnedZ2
n-test applied to the photons’

arrival times gave a significance ofσ = 5.0 with n = 2 harmonics. The difference

between the radio and gamma-ray ephemerides was∆Pradio,γ ≤ 10−9 s, well within

the error in the parameters, showing perfect agreement among radio and gamma-

ray ephemerides as expected, further supporting our detection andAGILE timing

calibration.

We observed PSR B1509–58 in three energy bands. We obtained1210±400

pulsed counts (∼ 5% of the total source, diffuse gamma-ray emission and residual

particle background counts) at energies30< E < 100MeV, 820±360pulsed counts

(∼ 7% of the total counts) at energies100< E < 500 MeV. The pulsed flux was

computed considering all the counts above the minimum of the light curve (see

[173]) We did not detect pulsed emission at a significanceσ ≥ 2 for E > 500MeV

and thus we can only give an upper limit at 1σ of < 270 pulsed counts. This is

consistent with the fact that only a1.4σ detection is reported at0.3 < E < 1 GeV

with theFermi-LAT data [1].

5.1.2 Light Curve and Spectrum of PSR B1509–58

Light Curve Characterization The gamma-ray light curves of PSR B1509–58 for

different energy bands are shown in Figure 5.2. TheAGILE light curve above

30 MeV shows two peaks at phasesφ1 = 0.39± 0.02 andφ2 = 0.94± 0.03 with

respect to the single radio peak, here put at phase 0, as obtained from the Parkes

ephemeris. The peak positions and widths in term of phase are calculated using a

Gaussian fit, yielding a FWHM of0.29(6) for the first peak and of0.13(7) for the

second peak, where we quote in parentheses (here and throughout this Chapter) the
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Figure 5.2 Phase-aligned gamma-ray light-curves of PSR B1509–58. Radio main peak is
at phase 0. The start of the y-axis coincides with the minimum of the pulsed fraction and,
consequently, with the background level. From top to bottom:AGILE high energy band
(> 100 MeV), 20 bins, 7.5 ms resolution;AGILE “soft” energy band (< 100 MeV), 10
bins, 15 ms resolution;COMPTELhigh energy band (10–30 MeV) andCOMPTELwhole
bandwidth (0.75–30 MeV) (from [126]).
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1σ error on the last digit. The errors considered are statistical, as the systematic

errors do not affect the measurements of the pulsed counts. The first peak is

coincident in phase with the X-ray single broad peak and withCOMPTELpeak (see

[126] and references therein). In its highest energy band (10–30 MeV)COMPTEL

showed the hint of a second peak (even though the modulation had low significance,

2.1σ ), which is also visible in the light curve derived fromEGRETobservations

(30–100 MeV), despite the fact thatEGRETdid not have a significant detection

of the pulsar above 100 MeV [76]. This second peak is coincident in phase with

AGILE’s second peak (Figure 5.2) in its lower energy band while it appears slightly

shifted at energies above 100 MeV. A possible explanation for this shift is discussed

in Section 5.1.3.AGILE thus confirms the previously marginal detection of a second

peak, statistically significant at5σ , calculated using a chi squared statistics test.

Fermi-LAT Analysis Using data from the beginning of the mission up to January

2011, and an updated ephemeris from Parkes data, we analyzedFermi-LAT

observations of PSR B1509–58. As shown in Figure 5.3,Fermi-LATlight curve

in this longer time span analysis, with respect to the one from [1], presents high

enough statistics to allow the characterization at low energies (< 150MeV), where

the second peak can be observed. The peak disappears when higher energies are

considered. Again we refer to Section 5.1.3 for a possible explanation if this trend.

Spectral Analysis Based on our exposure, calculated by theGRID scientific

analysis task AGExmapGen, we derived the gamma-ray flux from the number

of pulsed counts. This method, though typically giving higher statistical errors

than the likelihood analysis, is more accurate and sensitive to evaluate the flux

of this pulsar, given its soft spectrum (and the correspondingly large PSF) and

the contribution from other nearby and brighter sources and possibly from the

pulsar wind nebula (PWN), that all affect the spatial analysis. With this method,

we do not incur in the problem of modeling the background, which affects the

likelihood analysis. In fact, the counts below the pulsed threshold, which constitute

the background, are discarded, so that the observed pulsed counts do belong

to the pulsar. We dividedAGILE bandwidth into three energy intervals: 30–

100 MeV, 100–500 MeV and above 500 MeV. The pulsed fluxes thus obtained

were Fγ = 10(3)× 10−7 ph cm−2 s−1 in the 30–100 MeV band,Fγ = 1.8(8)×
10−7 ph cm−2 s−1 in the 100–500 MeV band and a1σ upper limit Fγ < 8×
10−8 ph cm−2 s−1 for E > 500 MeV. Finally, from the total number of pulsed
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Figure 5.3Fermi-LAT light curves for different energy bands: upper panel forE < 150
MeV, middle panel forE < 300MeV, bottom panel forE < 500MeV.
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Figure 5.4 Spectral energy distribution of PSR B1509–58 (solid line) obtained from a fit of
pulsed fluxes from soft to hard gamma rays. The three round points representCOMPTEL
observations [126]. The two square points representAGILE pulsed flux in two bands
(30< E < 100MeV and100< E < 500MeV). The red horizontal bar and arrow emerging
from it representAGILEupper limit above 500 MeV. The two green arrows representFermi-
LAT upper limits [1].

98



counts we obtained a pulsed flux atE > 30 MeV Fγ = 12(2)×10−7 ph cm−2 s−1

for E > 30MeV.

Figure 5.4 shows the SED of PSR B1509–58 based onAGILE’s and

COMPTEL’s observed fluxes.Fermi-LAT upper limits are also shown, which are

consistent with our measurements at a2σ confidence level.COMPTELobserved

this pulsar in three energy bands: 0.75–3 MeV, 3–10 MeV, 10–30 MeV, suggesting a

spectral break between 10 and 30 MeV.AGILEpulsed flux confirms the presence of

a soft spectral break. As shown in Figure 5.4, we modeled the observedCOMPTEL

andAGILE fluxes with a power-law plus cutoff fit using the Minuit minimization

package [108]:F(E) = k×E−α exp[−(E/Ec)β ], with three free parameters: the

normalizationk, the spectral indexα, the cutoff energyEc and allowingβ to assume

values of 1 and 2 (indicating either an exponential or a super-exponential cutoff).

No acceptableχ2 values were obtained for a super-exponential cutoff, the presence

of which can be excluded at a3.5σ confidence level, while for an exponential cutoff

we foundχ2
ν = 3.2 for ν = 2 degrees of freedom, corresponding to a null hypothesis

probability of 0.05. The best values thus obtained for the parameters of the fit were:

k = 1.0(2)×10−4 s−1 cm−2, α = 1.87(9), Ec = 81(20) MeV.

We performed an analysis of the ratio between the two peak heights. The

second peak appears in theCOMPTELband 10–30 MeV and is observed with

AGILE up toE≤ 500MeV: it is harder than the first peak in theCOMPTELenergy

band, and it is present at all energies in theAGILE energy band, so that it might

possibly be harder even atAGILE’s energies but the low statistics at high energies

do not allow us to discriminate.

As a consistency check for the pulsed fluxes reported above, a maximum

likelihood analysis in a region of 10 degrees around the source position was

performed to assess possible unpulsed contribution from the PWN, although

no detection was reported in the First Catalog of High-Confidence Gamma-ray

Sources detected by theAGILE satellite [179]. The likelihood analysis (see

[154] and for Agile in particular, details will be provided in Chen et al. in

preparation) took into account the numerous sources present in this crowded region

(including the extremely bright nearby gamma-ray pulsar J1509-5850, [229]).

The upper limit found in theAGILE energy range by likelihood analysis (Fγ <

40× 10−8 ph cm−2 s−1 above 100 MeV) is above the corresponding pulsed flux

above 100 MeV (Fγ = 21(6)×10−8 ph cm−2 s−1). This is compatible with the fact

that the timing analysis is expected to have for this target a better sensitivity (with
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respect to the likelihood analysis). It is worth noting that PSR B1509–58 is also not

detected by likelihood analysis byFermi-LAT [1] apart from the> 1 GeV energy

band where the emission could be related to the PWN seen byH.E.S.S.([13]).

5.1.3 Possible Explanations for the Soft Spectrum

Pulsar magnetosphere models are usually divided into two categories, depending

on the sites for the high-energy emission (see Section 1.3). Inpolar capmodels

the emission comes from the regions near the neutron star surface, whileouter

gapmodels predict that the emission be originated in the regions close to the light

cylinder. Alternative models predict an emission zone encompassing the whole

magnetosphere, which departs from the external rim of the polar cap region: these

are theslot gap models [163]. Different models predict different spectral and

geometrical properties. The bulk of the spin-powered pulsar flux is usually emitted

in the MeV-GeV energy band with spectral breaks at≤ 10 GeV (see [7] or e.g.

[18]). PSR B1509–58 has the softest spectrum observed among gamma-ray pulsars,

with a sub-GeV cutoff atE = 0.08(2) GeV. In the following we discuss how the

new AGILE observations can constrain the models for emission from the pulsar

magnetosphere.

Polar Cap + Photon Splitting

When PSR B1509–58 was detected in soft gamma-rays but not significantly at

E > 30 MeV, it was proposed that the mechanism responsible for this low-energy

spectral break might be photon splitting [90]. The photon splitting [12] is an exotic

third-order quantum electro-dynamics (QED) process expected when the magnetic

field approaches or exceeds thecritical value defined asBcr = m2
ec3/(eh̄) = 4.413×

1013 G, above which quantum effects become relevant. Most current theories for the

generation of coherent radio emission in pulsar magnetospheres require formation

of an electron-positron pair plasma developing via electromagnetic cascades. In

very high magnetic fields the formation of pair cascades can be altered by the

process of photon splitting:γ → γγ, which will operate as an attenuation mechanism

in the high-field regions near pulsar polar caps. Since it has no energy threshold,

photon splitting can attenuate photons below the threshold for pair production, thus

determining a spectral cutoff at lower energies. This process cannot operate in the

low fields of outer gap models because it only has appreciable reaction rates when

the magnetic field is at least a significant fraction of the quantum critical fieldBcr
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(the attenuation coefficientTsp scaling asTsp∝ (B/Bcr)6 = B′6), and magnetic fields

strong enough are not present in the outer magnetosphere asB∼ r−3.

In the case of PSR B1509–58 a polar cap model with photon splitting would

be able to explain the soft gamma-ray emission and the low energy spectral cutoff,

now quantified byAGILEobservations. Since the mechanism of photon splitting is,

as stated, strongly dependent on the magnetic field strength, if the field strength at

the emitting region isB′ ≥ 0.3 (i.e. at heights below 1.3 neutron star radii,RNS),

the photon splitting is the dominant means of attenuation that inhibits efficient pair

cascade production [90] and then gamma-ray emission. Based on the observed

cutoffs, which are related to the photons’ saturation escape energy, we can derive

constraints on the magnetic field strength at emission, in the framework of photon

splitting:

εsat
esc' 0.077(B′ sinθkB,0)−6/5 (5.1)

whereεsat
esc is the photon saturation escape energy andθkB,0 is the angle between

the photon momentum and the magnetic field vectors at the surface and is here

assumed to be very small:θkB,0 ≤ 0.57◦ (see [90]). Using the observed energy

cutoff (εsat
esc' E = 80 MeV) we find thatB′ ≥ 0.3, which implies an emission

altitude≤ 1.3RNS, which is the height where possibly also pair production could

ensue. This altitude of emission agrees with the polar cap models (see e.g. [56]). A

smaller energy cutoff, as in [90], would have implied even lower emission altitude

and a sharper break, possibly caused by the total absence of pair production. It is

apparent that small differences in the emission position will cause strong differences

in spectral shape. This is possibly the reason for the different emission properties of

the two peaks as observed in the total (AGILE plusCOMPTEL) gamma-ray energy

band and in the low-energyFermi-LAT band. Also, a trend can be observed, from

lower to higher energies (see the X-ray light curve for the trend in the first peak, as

in Fig. 3 of [126]), of the peaks slightly drifting away from the radio peak. This we

assume to be another signature of the fact that small variations in emission height

can be responsible for sensible changes in the light curves in such a high magnetic

field.

A soft cutoff (below 1 GeV) is in principle possible for polar cap scenarios

even without invoking photon splitting attenuation. In polar cap models the strong

magnetic field permits one-photon pair creation that attenuates super-GeV photons

in Crab-like (e.g. PSR B1509–58, based on the parameterB/P2 ) and Vela-like
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pulsars (e.g. PSR B0656+14, see Section 5.1.4), whereas pair creation in outer gap

models is mediated through the two-photon process involving surface thermal X-

rays as targets. According to the calculations in [56], emission from the regions

close to the polar caps is possible whenα ∼ θb, whereα is the angle between the

rotation and the magnetic axis andθb is the half-angle of the gamma-beam emerging

from the polar cap. Furthermore, with emission from the polar caps, or some (≥ 2)

polar cap radii, the pulse profile at high energies can have either one (as in the case

of PSR B0656+14) or two peaks, with a peak-to-peak phase separation as large

as 0.4–0.5 (albeit slightly smaller than what is observed for PSR B1509–58 at the

highest energies).

Problems with the Polar Cap Model

The polar cap model as an emission mechanism is nowadays debated. On one

hand theoretical objections arise from the fact that the angular momentum is not

conserved in polar cap emission (see [50], [105], [219] and see Section 4.7). At the

same time, mounting evidence of a preferential explanation of the observed gamma-

ray light curves with high altitude cascades is also coming from the recent results

by theFermi-LAT satellite (see e.g. [7]). In the case of PSR B1509–58, the derived

gamma-ray luminosity from the flux atE > 1 MeV, considering a 1 sr beam sweep

is Lγ = 4.2+0.5
−0.2d2

5.2×1035 erg/s, whered5.2 indicates the distance in units of 5.2 kpc.

While traditionally the beaming fraction (fΩ) was considered to be the equivalent of

a 1 sr sweep, nowadays (see e.g. [227]) the tendency is to consider a larger beaming

fraction (fΩ ≈ 1), close to a4π sr beam. UsingfΩ = 1 in our calculations, we would

have obtainedLγ = 5.8+0.1
−0.8d2

5.2× 1036 erg s−1. Thus the maximum conversion

efficiency of the rotational energy loss (Ė≈ 1.8×1037 erg s−1, see Section 5.1) into

gamma-ray luminosity is 0.3. Our result is not comparable with the typical gamma-

ray luminosities above 100 MeV, because, for PSR B1509–58, this energy band is

beyond the spectral break. UsingAGILEdata alone we obtained a luminosity above

30 MeV Lγ = 5.2(6)d2
5.2× 1035 erg/s, again for a 1 sr beam. If the gamma-ray

luminosity cannot account for a large fraction of the rotational energy loss, then the

angular momentum conservation objection from [50] becomes less cogent for this

pulsar, exactly as it happens for the radio emission.
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Alternative Scenarios

If such an efficiency as that of PSR B1509–58 were incompatible with this

conservation law, an interpretation of PSR B1509–58 emission should be sought

in the frame of the three dimensional outer magnetosphere gap model, as was

done by Zhang & Cheng [235]. According to this model, hard X-rays and low

energy gamma-rays have the same origin: they are produced by synchrotron self-

Compton radiation of secondary electron-positron pairs of the outer gap. Therefore,

as observed, the phase offset of hard X-rays and low energy gamma-rays with

respect to the radio pulse is the same, with the possibility of a small lag due to

the thickness of the emission region. According to their estimates, a magnetic

inclination angleα ≈ 60o and a viewing angleζ ≈ 75o are required to reproduce the

observed light curve. Similarly, for PSR B0656+14, it is argued [229] that largeα
andζ angles are required to reproduce the observed light curve in the framework of

outer gap models. Finally, using the simulations of [227], who produced a map of

pulse profiles for different combinations of anglesα andζ in the different emission

models, the observed light curve fromAGILE is best reproduced ifα ≈ 35◦ and

ζ ≈ 90◦, in the framework of the two pole caustic model [69].

Since the parameters used for the application of the outer gap model to

PSR B1509–58 were based on its former observations byCOMPTEL, AGILE

spectrum does not precisely fit the spectrum predicted by the model in [235].

Furthermore, the values ofα andζ required by this model are not in good agreement

with the corresponding values obtained with radio measurements. In fact, Crawford

et al. [53] observe thatα must be< 60◦ at the 3σ confidence level. The

prediction obtained by the simulations of [227] for slot gap emission is in better

agreement with the radio polarization observations than what predicted in the outer

gap framework. Furthermore, in the framework of the rotating vector model (RVM,

see e.g. [140] and references therein), Crawford et al. [53] propose that, if the

restriction is imposed thatζ > 70◦ [158] thenα must be> 30◦ at the3σ level. For

these values, however, the Melatos model for the spin down of an oblique rotator

predicts a braking indexn > 2.86, which is slightly inconsistent with the observed

value (n = 2.839(3), see Section 5.1).

5.1.4 Analogous Cases

The second softest spectrum and lowest energy cutoff (0.7(5) GeV) is that of

PSR B0656+14, recently observed byFermi-LAT [229]. The observed light curve
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of PSR B1509–58 shows two peaks lagging the radio peak by, respectively,φ1 =

0.39±0.02andφ2 = 0.94±0.03.

The scenario proposed by [90] is strengthened by its prediction that

PSR B0656+14 should have a cutoff with an intermediate value between

PSR B1509–58 and the other gamma-ray pulsars. The main reason for the parallel

between the two pulsars was at the time the fact that they had, respectively, the

highest and second highest inferred magnetic fields. At present, however, there are

a handful of gamma-ray pulsars with higher magnetic field than PSR B0656+14 in

theFermi-LAT First Year Pulsar Catalog [7] which do not show a low energy cutoff.

Nonetheless, PSR B1509–58 (see [126, 53]) and PSR B0656+14 [62, 229] both

show evidence of being aligned rotators, which could imply polar cap emission, as

is also hinted by [30].

For PSR B0656+14 no outer magnetosphere emission model seemed to satisfy

the observed features and a lower magnetosphere model, with an aligned geometry

between the rotational and magnetic axes, has been proposed and seems plausible

from polarization studies. Its efficiency in the conversion of the rotational energy

loss into gamma-ray luminosity is one of the lowest observed for the gamma-

ray pulsars (see [172], [7]):η = 0.01, not violating the constraints imposed by

the conservation of angular momentum. Also in the case of PSR B0656+14 (see

previous Section), [229] conclude that the large values ofα andζ are somewhat

at odds with the constraints from the modeling of the radio data and the thermal

X-rays which seem to imply a more aligned geometry. A recent work on sub-

luminous pulsars (ref) underlines the peculiar properties of the gamma-ray emission

of this pulsar, which is significantly inefficient in the conversion of its rotational

energy into gamma-ray luminosity:Lγ,B0656= 1
20Lγ ,heu whereLγ,heu is a heuristic

luminosity defined asLγ ,heu ≈ (Ė × 1033erg/s)1/2. Geometrical and energetic

arguments show PSR B0656+14 incompatibility with outer gap emission.

Conclusions Improved radio polarization measurements would help placing better

constraints on the pulsar geometry and therefore on the possibility of a gap in the

extended or outer magnetosphere, but the quality of the polarization measurements

from [53] is already excellent, the problem being that PSR B1509–58, like most

pulsars, only shows emission over a limited pule phase range and therefore the RVM

models are highly degenerate. At present the geometry privileged by the state of the

art measurements is best compatible with polar cap models. Higher statistics in the
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number of observed gamma-ray pulsars could help characterize a class of “outliers”

having gamma-ray emission from the polar caps, which potentially constitute a

privileged target forAGILE.

5.2 Kes 75

Kes 75 (G29.7–0.3; [117, 33, 162, 165, 156]) is a young shell-type supernova

remnant (SNR) resembling the Crab Nebula, with small-scale features and a central

compact synchrotron wind nebula. Its long-sought pulsar, PSR J1846–0258, was

discovered in X-rays thanks to timing analysis ofRXTEandASCAdata [83], but it

remains undetected at radio frequencies [22].

PSR J1846–0258 is a relatively slow pulsar (P∼ 324 ms) with a high slow-

down rate (̇P∼ 7×10−12 ss−1). If standard dipole magnetic braking is assumed,

its spin-down age,τsd' 723yr, in agreement with the SNR association, makes it

the youngest pulsar known. For a neutron star with radius of 10 km and moment of

inertia of1045 g cm2, the derived spin-down power iṡE = 8×1036 erg s−1, while

the inferred dipole magnetic field intensity on the surface (at the magnetic equator)

is B ∼ 4.9× 1013 G, exceeding the quantum critical value (BQED = mec3/eh̄ =

4.413×1013 G). Only few ”ordinary” pulsars have magnetic fields this strong (see

e.g. [113]) and interestingly PSR J1846–0258, long-considered to be exclusively

rotation powered, has displayed behaviors formerly associated only with magnetars

(i.e. pulsars whose emission is mainly powered by magnetic field decay), including

large flux and spectral variations and the emission of magnetar-like short bursts and

even an outburst episode [81, 129, 135, 138].

Pulsed emission from PSR J1846–0258 was observed up to a few hundreds

keV with INTEGRALandRXTE[125], but the source is not among theFermi-LAT

gamma-ray pulsars [7]. Using 3 years of pointing data plus 1 year of sky-survey

data,AGILE could detect from this pulsar gamma-ray emission above 30 MeV.

This is the second source, after PSR B1509–58 (J1513–5908, [177]), showing a

very soft gamma-ray spectrum with a low-energy cutoff, possibly related to a close

to quantum critical magnetic field.

5.2.1 Gamma-Ray Observations of Kes 75

Gamma-ray photons for PSR J1846–0258 were collected and analyzed starting in

July 2007, up to late October 2009 in pointing mode and then from November 2009

till November 2010 in spinning mode. The largeAGILE effective area and long
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Figure 5.5ν − ν̇ (F0–F1) contour plots centered on the values obtained from theRXTE
ephemeris and extended over> 40σ aroundRXTEfrequency and over> 15σ aroundRXTE
frequency derivative. The central boxes represent1σ (internal continuous line) and3σ
(external dotted line) errors around theRXTEephemeris values. The upper panel represents
the results of theZ2–test, the lower panel represents the results of theχ2–test. The colors
represent significance levels of the detection, with the following color coding: red3σ ,
orange3σ , yellow 3σ , green4σ , light blue4.2σ , blue4.5σ , purple5σ , black> 8σ . The
significance excess outside the3σ region are perfectly compatible with what is statistically
expected for this number of trials (see text).
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Figure 5.6 Close up on the1σ to 3σ region of theν − ν̇ contour plots. As expected, the
maximum significance is coincident in both tests and it represents the strongest excess for
each plot.
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observing time (∼ 500days on target) provide a total exposure of3.7×109 cm2 s

(E > 30 MeV) during this over 3 yr period, which gives our observations a good

photon harvest from this pulsar.

Simultaneous X-ray observations usingRXTE were made using the

Proportional Counter Array (PCA). TheRXTE data on PSR J1846–0258 are

unevenly spaced over 11 years from 1999 April 18 through 2010 April 22 (MJD

51286 – 55308). Observations taken between 1999 April 18 and 21 (MJD 51286 –

51289) are excluded because they cannot be unambiguously phase connected with

the rest of the data. Data from 2000 January 31 to 2008 December 10 (MJD 51574

54810) were reduced and analyzed previously and details can be found in [137] and

[135]. Data taken between 2009 January 27 and 2010 April 22 (MJD 54858 55308)

are described in citelivingstone11.

Using the X-ray ephemeris provided by theRXTEobservatory, we folded the

gamma-ray photons, in correspondence to the X-ray values, including thewave

terms (see [173] for details onAGILE pulsar timing analysis, and Sections 2.2.3

and 2.5.3 for theFITWAVEStechnique). High confidence (G) and low confidence

(L) gamma-ray photons were used for the timing analysis of this pulsar. An

optimized analysis was performed, aimed at cross-checking and maximization of

the significance of the detection, including an energy-dependent event extraction

angle around the source position based on the instrument point-spread-function

(PSF). The chi-squared (χ2)-test applied to the 10 bin light curve atE > 30 MeV

gave a detection significance ofσ = 3.0. The unbinnedZ2
n-test applied to the

photons’ arrival times gave a significance ofσ = 4.0 with n = 2 harmonics.

We then performed a search around theRXTEephemeris values. Weighting

the corresponding detection probabilities with the number of independentν andν̇
trials (ntrials ∼ 220), the weighted gamma-ray pulse significance is5σ . We verified

that our analysis procedure does not produce fake detections even considering

much largerν and ν̇ ranges (ntrials > 104) than those compatible with the X-

ray ephemeris. To produce our timing solution, the position of the source

was held at theRXTE coordinates reported above. We have checked that the

positional uncertainty does not significantly affect barycentric corrections and thus

the rotational parameters resulting from our timing analysis.

The present sensitivity did not allow a higher significance. While longer data-

spans would help increase it, we did some side checks to support the robustness of

the detection. Figures 5.5 and 5.6 show theν− ν̇ contour plot related to the gamma-
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Figure 5.7 This figure illustrates the trend of the detection significance as a function of the
exposure time for PSR J1846–0258. The exposure is indicated by the thinner black line,
the significance by the thicker red line. As observed, the exposure is discontinuous, mainly
due to the pointing mode ofAGILE initial observing strategy. As expected, the significance
follows the trend of the exposure and it slightly decreases when the time span considered
grows but no exposure time is devoted to the source.

ray timing solutions with Z-test significance> 4σ . The inset shows the central

region, comprising a3σ uncertainty around the nominal values obtained from the

RXTEephemeris forν andν̇ . As expected, the significance is here the highest while

no other> 4σ detection is observed outside this range, as is statistically predicted.

Figure 5.7 shows how the detection significance increases with the exposure, a

further confirmation of the reliability of the detection.

Fermi-LAT data were analyzed for the same interval of time as covered by the

RXTE observations. The resulting light curve is not per se significant but it shows

a trend not dissimilar from the one observed in the light curves fromAGILE.

5.2.2 Light Curve and Spectral Behavior of Kes 75

The multi-wavelength light curves obtained using the three instruments are shown in

Figure 2. The light curves show two peaks, that we modeled using a Gaussian fit: P1
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Figure 5.8 Background subtractedAGILEandFermi-LAT light curves of PSR B1509–58are
shown. From top to bottom: theAGILE light curves below and above 100 MeV and in the
whole energy range and theFermi-LAT light curve in the whole energy range.
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atφ1 = 0.33±0.03and P2 atφ1 = 0.83±0.02, with respect to the X-ray ephemeris.

No significant gamma-ray emission is observed at energies above 150 MeV, and we

indeed obtained the highest detection significance both inAGILE andFermi-LAT

using only photons up to this energy. The total number of pulsed photons observed

by AGILE in the energy band between 30 and 150 MeV was5100±980. The pulsed

gamma-ray flux obtained in this energy band isFγ = 1.8±3×10−6 ph cm−2 s−1.

We calculated the gamma-ray luminosity of PSR J1846–0258 in the energy

range30−150MeV. We used a distance estimated = 6 kpc from [133], but keep it

as a parameter, as well as the value offΩ, which takes into account the amplitude of

the beam sweep and ranges from the typical1/4π used for lower magnetospheric

models, to a maximum of∼ 4π for outer magnetospheric models. We found

Lγ = 6±1×1036d6 fΩ erg s−1 which would correspond to a conversion efficiency

of the rotational energyη = 0.2 given Ė = 8×1036 erg s−1. Such an efficiency is

not easily comparable to the usual gamma-ray efficiencies that are applied to the

emission atE > 100 MeV. It is as well difficult to compare them with the upper

limits obtained by [168] for theFermi-LAT observations (Lγ ≤ 26± 19× 1034 fΩ
erg s−1, using a distance of7.9± 2.8 kpc), as theE > 100 MeV analysis is not

statistically significant per se for this pulsar and in this caseLγ is considered in the

standardE > 100MeV band.

5.2.3 The Peculiar Behavior of Kes 75

Originally interpreted as an ordinary rotation-powered pulsar, PSR J1846–0258

showed in recent years the presence of magnetically induced burst activity (see

e.g. [138] for a review). Such activity and its very high surface magnetic field

place PSR J1846–0258 in an intermediate region between the high-magnetic-field

pulsars and magnetars.AGILE observations show the presence of high-energy

emission, but only up to 150 MeV, suggesting a cutoff far below 1 GeV. Such a

cut-off energy is smaller than that usually observed in rotation powered pulsars, but

is similar to what has been observed in a restricted number of pulsars with a high

magnetic field [229, 177, 168]. In the case of PSR B1509-58, [177] observed that

the absence of high-energy emission above a certain threshold might be explained

in the framework of the third-order quantum electrodynamics process ofphoton

splitting [11, 90]. This process, in which a photon is split into two photons of lower

energies, suppresses the emission at the highest energies. Photon splitting has no

threshold and can therefore inhibit the pair production, unless the escape energy for
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photons created by the photon splitting is reached at a height in the magnetosphere,

depending on the magnetic field intensity, where the threshold for pair production

is reached and it can ensue (see Discussion in [177]). This mechanism could

explain the detection of radio emission of PSR B1509–58 and the non detection

of PSR J1846–0258 which has an higher magnetic field and a lower energy cutoff

with respect to PSR B1509–58.

The emission from photon splitting can only arise in regions where the

magnetic field is a consistent fraction of the quantum critical field (B ∼ Bcr =

m2
ec3/(eh̄) = 4.413× 1013 G), so it occur too far away from the polar caps of

the pulsar, as the magnetic field scales asB∼ r−3. The recent observations with

Fermi-LAT and the IACTsMAGIC andVERITAStelescopes [7, 18, 146, 147, 223]

seem to disfavor the polar cap model as a viable way to explain the gamma-ray

emission from pulsars. Also, [168], in their work onFermi-LAT observations

of high magnetic field pulsars, found ”standard” gamma-ray emission from PSR

J1119–6127, with spectral behavior not in line with that of PSR J1846–0258. On

the other hand, as is observed in [177], a few pulsars, such as B1509–58 [177],

B0656+14 [229, 190], do not seem to fit in the constraints of the outer or extended

magnetosphere models [47, 189, 163, 69]. In these cases, that are indeed rare among

the known sample of 100 gamma-ray pulsars, the occurrence of two conditions

may concur to allow emission from the polar caps, thus overcoming the theoretical

limits of the model [219]. In [177] we proposed that the two conditions might be

a high magnetic field and an aligned geometry. [190] also find that, though no

firm conclusion can yet be drawn without more constraining geometry and distance

measurements, all the sub-luminous pulsars of theFermi-LAT sample seem present

aligned geometries from the radio measurements. Unfortunately, no clear indication

on the geometry of PSR J1846–0258 can be obtained in the absence of radio

emission. The recent detection of gamma-ray emission from PSR J1119–6127 [168]

seems to go in this same direction. They find that the geometry of this pulsar, as

indicated by the radio observations, is not aligned and that the outer gap model best

explains its emission: if the emission comes from the outer magnetosphere, then the

magnetic field would have become much smaller. A further alternative explanation

to the sub-luminosity of some pulsars has been proposed by [199], which again

predict that polar cap emission, though modified [222]. This model can be invoked

for pulsars with magnetic fieldsB∼ 0.1Bcr and periods70< P < 500ms.
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5.2.4 From Pulsars to Magnetars?

It has been observed [134, 141, 122] that the link between rotation powered pulsars

and magnetars may be evolutionary. Based on simple arguments of pulsars’ theory

[166, 193, 192], one can expect that a pulsar that has a braking index significantly

smaller than the standard value for dipole only emission (n = 3) and experiences

frequent glitch activity (that would alter its spin down in a partially permanent way),

will be subject to an increase of its inferred magnetic field (B = 3.2× 1019
√

PṖ)

and decrease of the inferred spin-down age (τ = 1
n−1

P
Ṗ

). The characteristics of

having a high inferred magnetic field and a very young spin-down age are typical of

magnetars. PSR J1846–0258 may be at an advanced stage of this conversion, while

PSR B1509-58, for example, could be at an earlier stage. According to [134], not all

pulsars would follow this evolutionary path, but only those with high glitch activity.

What differentiates among pulsars with different glitch activity may be for instance

the configuration of the toroidal magnetic field which has recently been recognized

to play a major role in the magnetic activity of a neutron star (see [186, 175] and

the following). [175] believe that, since this behavior is regulated by the toroidal

component, it should not be excluded, albeit rare, that outbursting episodes could be

observed also in canonical pulsars, depending on their age and, consequently, glitch

activity. [180] find that the pulsar- or magnetar-like behavior can be influenced by

the toroidal magnetic field at birth and, in particular, that the toroidal field plays a

relevant role in the magnetic activity if it exceeds the poloidal magnetic field. While

they conclude that pulsars and magnetars can be simply considered as different

versions of the same phenomenon, with a slight change in the initial parameters, it

can also be argued that the evolution of the geometry of a pulsar (i.e. the progressive

alignment of the spin and magnetic axes, [230]), causing changes to the toroidal

field structure, can at the same time alter its magnetically-induced behavior. The

recently measuredn = 0.9±0.2 of pulsar J1734–3333 [72] seems to point towards

this same direction.

[138] extensively discuss the decrease in the braking index,n, of PSR J1846–

0258 following the glitch at the end of May 2006. The glitch was accompanied by a

magnetar-like outburst, consisting of X-ray bursts and an increase in the source flux

[81, 129] and it was followed by an increased level of timing noise and an18±5%

decrease in the braking index (n). While the observed variation inn may be a result

of the increased level of timing noise observed after the outburst, this issue should be

resolved with ongoing timing observations of the source, as the level of timing noise
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has been decreasing since the outburst, while the new value ofn thus far appears

to be stable. Thus, the two effects do not seem strongly correlated: timing noise

typically depends oṅν and the braking index on the much larger variation inν̈ , but

both seem to confirm an increase in magnetic activity first suggested by the observed

magnetar-like outburst. While no substantial increase (∼ 0.3%) is observed in the

poloidal magnetic field strength, these timing effects might be connected to changes

in the magnetospheric currents (as discussed as length in [138]) and thus be a sign

of an increase in the toroidal component of the magnetic field, which is the one that

should be responsible for the magnetar-like activity [214, 215, 186].

5.3 Conclusions

No gamma-ray emission has been detected from magnetars so far [3]. It was thought

[32] that the high magnetic field and photon splitting should be responsible for this

absence, but, as gamma-ray emission has been detected in pulsars with high surface

magnetic fields [7], the reason must be found elsewhere or be, at least, twofold. In

[177] we tried to associate the high magnetic field to an aligned geometry in order

to derive emission from the lower magnetosphere which should have a low energy

cutoff. Here no geometry constraints are possible, due to the absence of radio

emission [22], but an evolutionary scenario is proposed where the development

of a toroidal field may progressively suppress the gamma-ray emission.AGILE

observations, particularly well suited for this kind of ”soft” targets, will help to

shed light on the mechanisms at play in high magnetic field pulsars.
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Chapter 6

Pulsars and their Environments

Pulsars are known to power winds of relativistic particles that can produce bright

nebulae by interacting with the surrounding medium. These Pulsar Wind Nebulae

(PWNe) are observed by their radio, optical, and X-ray emissions, and in some cases

also at TeV (tera-electron volt) energies, but the lack of information in the gamma-

ray band has long precluded drawing a comprehensive multi-wavelength picture

of their phenomenology and emission mechanisms. Using data fromAGILE, we

detected the Vela PWN in the energy range from 100 MeV to 3 GeV. We published

this detection in Science [174] and I participated mainly to the pulsed analysis from

which the subtraction started. This result gave constraints on the particle population

responsible for the GeV emission and establishes a class of gamma-ray emitters that

could account for a fraction of the unidentified galactic gamma-ray sources.

AGILE was also the first satellite to report on the abnormal flaring behavior

coming from the region surrounding the Crab pulsar. We published the detection

of the flare in [209] and put forward a tentative modeling of the flare in [224]. To

both works I gave my contribution, plus the Pulsar Group analyzed possible causes

deriving from the pulsar itself, as discussed in Section 3.4.1.

6.1 Pulsar Wind Nebulae

A Pulsar Wind Nebula (PWN) is a bubble of shocked relativistic particles, produced

when a pulsars relativistic wind interacts with its environment. The central

pulsar generates a magnetized particle wind, whose ultra-relativistic electrons

and positrons radiate synchrotron emission across the electromagnetic spectrum

[167, 187].
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6.2 Emission from PWNe

Multi-wavelength observations of PWNe provide crucial information on the

underlying particle spectrum and strongly constrain both the magnetic field strength

and the stage of evolution. Of particular interest is the spectrum of low-energy

particles contained in the PWN. These retain the history of early energy losses as

well as possible signatures of features in the pulsar injection spectrum.

Figure 6.1 Synchrotron (left) and IC (right) emission (for scattering off of the CMB) from
a PWN at ages of 1000 (solid), 2000 (dotted), and 5000 (dashed) years. Details in [200]

As particles are injected from a pulsar into its PWN, the resulting emission

is determined by the evolved particle spectrum and magnetic field, as well as

the energy density of the ambient photon field. The injected spectrum is often

characterized as a power law:Q(Ee, t) = Q0(t)(Ee/E0)−α . The resulting emission

spectrum is found by integrating the electron spectrum over the emissivity function

for synchrotron and IC radiation using, respectively, the nebular magnetic field and

spectral density of the ambient photon field. As illustrated in Figure 6.1 [201], the

build-up of particles in the nebula results in an IC spectrum that increases with time.

The synchrotron flux decreases with time due to the steadily decreasing magnetic

eld strength associated with the adiabatic expansion of the PWN.

At the latest phases of evolution, when the nebula is very large and the magnetic

field is low, the IC emission can provide the most easily detected signature. Such

behavior is seen for a number of PWNe that have been identified based on their

emission at TeV energies, and for which only faint synchrotron emission near the

associated pulsars is seen in the X-ray band. The broadband spectrum of a PWN,
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along with the associated dynamical information provided by measurements of the

pulsar spin properties, and the size of the PWN and its SNR, place very strong

constraints on its evolution and on the spectrum of the particles injected from the

pulsar. Combined with estimates of the swept-up ejecta mass, this information

can be used to probe the properties of the progenitor star and to predict the long-

term fate of the energetic particles in the nebula. Recent multi-wavelength studies

of PWNe, combined with modeling efforts of their evolution and spectra, have

provided unique insights into several of these areas.

6.3 The Vela SNR and PWN

The Vela SuperNova Remnant (SNR) is the nearest SNR (distance≈ 290 pc)

containing a bright pulsar, PSR B0833–45, which has a characteristic age of 11,000

years and a spin-down luminosity of7×1036 erg s−1 [211, 65]. This SNR extends

over a diameter of∼ 8◦ and is known from early radio observations to embrace a

number of regions of non-thermal emission including Vela X, a flat-spectrum radio

component with a diameter of 100 arcmin near the center of the SNR.

6.3.1 The Region

Vela X, separated from the Vela pulsar by∼ 40 arcmin, is generally interpreted as

the pulsars radio synchrotron nebula [228, 68]. A diffuse emission feature (∼ 1◦

long) coincident with the center of Vela X was detected in X-rays (0.6 to 7.0 keV)

by the ROSAT[152] andASCA[152] satellites. It was first suggested that this

feature, which is closely aligned with a filament detected at radio wavelengths,

should correspond to the outflow jet from the pulsars pole [77, 96]. More recently,

observations with Chandra [96] clearly unveiled the torus-like morphology of the

compact X-ray nebula surrounding the pulsar and indicated that the center of Vela

X lies along the extension of the pulsar equator, although bending to the southwest.

The detection of very-high-energy (VHE) gamma-rays from the Vela X region

was claimed byHESS[14] and confirmed byCANGAROO[71]. The strong VHE

source HESS J0835–455 (luminosity∼ 1033 erg s−1 at energies above 0.55 TeV)

coincides with the region of hard X-ray emission seen by theROSATsatellite. The

best-fit VHE emission centroid (RA= 08h35m1s, Dec= −45◦34′40′′) is ∼ 0.5◦

from the pulsar position, and the VHE emission has an extension of∼ 5 parsec×4

parsec. The detection of Vela X at TeV energies demonstrated that this source emits

non-thermal radiation, in agreement with the hypothesis that it corresponds to the
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PWN, displaced to the south by the unequal pressure of the reverse shock from the

SNR [37].

6.3.2 Relevance of High-Energy Observations for the Vela X PWN

The multi-wavelength spectrum of the center of Vela X can be modeled as

synchrotron radiation from energetic electrons within the cocoon (radio and X-

rays) and inverse-Compton (IC) emission from the scattering (by the same electron

population) of the cosmic microwave background radiation (CMBR), the galactic

far- infrared radiation (FIR) produced by re-radiation of dust grains, and the local

starlight [57, 131, 61]. Alternatively, a hadronic model can be invoked for the

gamma-ray emission from the Vela X cocoon, where the emission is the result of

the decay of neutral pions produced in proton-proton collisions [106]. Observations

in the high-energy (HE) MeV-GeV band are crucial to distinguish between leptonic

and hadronic models as well as to identify specific particle populations and spectra.

Morphologically the Vela X PWN appears to consist of two emission regions:

whereas X-ray (∼ 1 keV) and VHEHESSgamma-ray observations appear to define

a cocoon type shape south of the pulsar, radio observations reveal an extended area

(including the cocoon area), also south of the Vela pulsar. Since no wide FoV

observations of the synchrotron emission between radio and X-rays are available,

it is not known how the lepton spectra of these two components connect and how

the morphology changes with energy. [61] found that two distinct lepton spectra

describe the respective radio and X-ray/VHE gamma-ray spectra, with a eld strength

of 5 G self-consistently describing a radiation spectral break (or energy maximum)

in the multi-TeV domain as observed byHESS(if interpreted as IC radiation),

while predicting the total hard X-ray flux above 20 keV (measured by the wide

FoV INTEGRAL instrument) within a factor of two. If this same field strength

were also representative of the radio structure (including filaments), the implied IC

component corresponding to the highest radio frequencies would reveal a relatively

bright high energy gamma-ray structure at HE energies. A higher field strength in

the filaments would imply fewer leptons in Vela X and hence a fainter HE signal.

6.4 AGILE Observations of the Vela X PWN

The Vela region was recently observed from 30 MeV to 50 GeV byAGILE and

Fermi-LAT. AGILE observed the Vela pulsar for∼ 180days (within60◦ from the

center of instruments field of view) from July 2007 (54294.5 MJD) to September
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Figure 6.2 (A) Gaussian-smoothedAGILE intensity map (ph cm−2 s−1 sr−1 with pixel size
0.25◦ × 0.25◦) at E > 400 around the Vela pulsar, including only off-pulse events (i.e.,
discarding events with phase corresponding to Vela pulsed emission). The neutron star
position is marked with a black cross; green circles are the 68% confidence contours for
the position of AGL J0848–4242 and AGL J0834–4539 (Vela X). The AGILEE > 400
MeV energy band is well suited for gamma-ray imaging and provides a good com- promise
between the instrument-effective area (∼ 400cm2; ∼ 100counts from AGL J0834–4539)
and PSF (∼ 1◦, 68% containment radius), both parameters decreasing with energy. (B)
The gamma-ray diffuse source AGL J0834–4539.AGILE contours (left) are in the range
1.4×10−4 to 1.6×10−4 ph cm−2 s−1 sr−1, with step4×10−6. HESScontours (right) are
from [14].
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2009 (55077.7 MJD). To obtain precise radio ephemeris and to model the Vela

pulsar timing noise for the entireAGILE data span, we made use of observations

with the Mount Pleasant radio telescope (see Section 3.3). The Vela pulsar timing

analysis provided a total of∼ 40,000 pulsed counts with energies between 30

MeV and 50 GeV; the difference between the radio and gamma-ray ephemeris was

< 10−11 s. Gamma-ray pulsed counts are concentrated within the phase interval

0.05 to 0.65 (where 0 is the phase corresponding to the main radio peak; see

Section 3.3). We verified that no pulsed gamma-ray emission is detected outside

this interval, consistent with reports of previous observations byEGRET [112],

AGILE [173], andFermi-LAT [2] .

With the aim of performing a sensitive search for close faint sources

excluding the bright emission from the Vela pulsar, we discarded the time intervals

corresponding to the phase interval 0.05 to 0.65. The analysis of the resulting

off-pulse images (taking only events corresponding to the pulsar phase interval

0.65 to 1.05, for a total of∼ 14,000 events) unveiled few gamma-ray sources,

none of which coincides with the Vela pulsar. A maximum likelihood analysis

[208], performed on theE > 100 MeV data set within a region of5◦ around the

pulsar position,revealed two sources at better than3σ confidence (Figure 6.2): AGL

J0848–4242 (at galactic coordinatesl = 263◦.11, b = 0◦.65, 68% confidence error

circle radius∼ 0◦.25) and AGL J0834–4539 (atl = 263◦.88, b = −3◦.17, with

confidence error circle radius∼ 0◦.20. A gamma-ray source coincident with the

EGRETsource 3EG J0841–4356 [94] was also detected with lower significance,

and the Vela Junior SNR (RX J0852.0–4622) also possibly contributes to an excess

of counts in the galactic plane aroundl = 265◦.6.

The brightest gamma-ray source in this complex scenery that lays hidden by

the powerful Vela pulsar, is AGL J0834–4539.∼ 264counts are detected byAGILE

for this source, that is observed with a significance of∼ 5.9σ and with a photon flux

atE > 100MeV is Fγ = (35±7)×10−8 ph cm−2 s−1. It is located∼ 0◦.5 southwest

from the Vela pulsar position (outside the 95% source position confidence contour)

and has a spatial extent of∼ 1◦.5×1◦. Its shape is asymmetric and incompatible

with the AGILE PSF. Therefore, possible residual emission from the pulsar (in

principle associated to undetected weak peaks in the off-pulse interval of the light

curve) cannot substantially contribute to this diffuse feature. No relevant systematic

errors on positions, fluxes, and spectra (mostly due to uncertainties on the galactic

gamma-ray diffuse emission model) affectAGILE sources detected around the5σ
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level. AGL J0834–4539 is positionally coincident with HESS J0835–455, the TeV

source that is identified with the Vela X nebula, and has a similar brightness profile

to it (Figure 6.2). This implies that AGL J0834–4539 is associated with the pulsars

PWN.

6.4.1 Spectral Results

Figure 6.3 Gamma-ray high-energy and very-high-energyνFν spectrum of the Vela X
PWN. HESSdata fit an IC process (scattering on CMBR) related to electron power-law
index 2.0 with a break at 67 TeV and a total energy content of2.2× 1045 erg [14].
AGILE data are compatible with IC emission from the additional electron component,
well reproducing the observed total radio spectrum (Etot = 4× 1048 erg), assuming the
same field strength (∼ 5 µG) as required by the TeV spectral break. Unlike the TeV IC
emission, GeV IC scattering is within the Thompson limit. Thus, in addition to the CMBR
component (photon densitynph = 0.25 eV cm−3, photon energyEph = 10−3 eV), also FIR
(nph = 0.3 eV cm−3, Eph = 10−2 eV) and starlight (nph = 1.4 eV cm−3, Eph = 1 eV) photon
fields can significantly contribute to the high-energy IC counterpart of the radio spectrum
fitting AGILE data [dot-dashed lines: CMBR (a), FIR (b), starlight (c); thick line: total IC
spectrum].

On the basis of the available count statistics, we performed a first estimate of

the spectrum by sampling the flux in the three energy bands (0.1 to 0.5 GeV, 0.5 to

1 GeV, and 1 to 3 GeV; Figure 6.3) where the source is clearly detected. A power-

law fit yields a photon indexα = −1.67± 0.25. The AGILE spectral points are

a factor of∼ 2 below the previousEGRETupper limits [60] and well above the

extrapolation of theHESSspectral energy distributionνFν to lower energies. The
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PWN gamma-ray luminosity in the 0.1- to 10-GeV band, for a distance of∼ 290

pc [65, 44], is4+4
−2×1033 erg s−1, corresponding to∼ 10−3Ėrot (whereĖrot is the

spin-down luminosity of the pulsar). Such a luminosity is slightly higher than at

VHE energies (9.9×1032 erg s−1).

6.4.2 The Origin of the Emission

In the frame of leptonic models, theAGILE measurements are not consistent with

a simple multi-wavelength spectral energy distribution involving a single electron

population. TheAGILE spectral points are one order of magnitude above the fluxes

expected from the electron population simultaneously fitting synchrotron X-ray

emission (peaking at∼ 1 keV) and IC TeV emission [14, 131].

Additional electron populations should be invoked to explain the observed

GeV fluxes. This is not surprising in view of the complex morphology of the

PWN seen in radio and X-rays, where different sites and features of non-thermal

emission are present: the anisotropic pulsar wind and non homogeneous SNR

reverse shock pressure produce different particle populations within the shocked

wind. In particular, assuming the same magnetic field (5µG) reproducing the TeV

spectral break, the radio synchrotron emitting electrons observed in the Vela X

structure [21] may be responsible for the IC bump in the GeV band arising from

scattering on CMBR and galactic and starlight photon fields, as predicted by [61].

Indeed, the position whereAGILE sees the maximum brightness (RA= 08h35m,

Dec= −45◦44′) is also roughly where the 8.4-GHz radio emission is brightest

(). AGILE data are compatible with the IC parameters modeled by [61] (electron

spectral index 1.78 and maximum energy∼ 20 GeV), although our measurements

could suggest a higher contribution from IC photon seeds. In particular, assuming

a starlight energy density of 1.4 eV cm−3 and a mean temperature of∼ 2300K

(see http://www.iasf-milano.inaf.it/giuliani/public/thesis/node10.html), we obtain a

good description of theAGILE data (Figure 6.3).

The AGILE measurements would be incompatible with the scenario of

nucleonic gamma-ray production in the Vela TeV nebula in the frame of a single

primary electron population. These models predict very faint GeV emission (<

1030 erg s−1) even when including synchrotron and IC emission from primary

and secondary electrons produced by the inelastic nuclear scattering [106]. On

the other hand, the proposed additional electron component scenario described

above leaves room for uncorrelated GeV-TeV emission, although the comprehensive
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multi-wavelength two-component leptonic model (providing strong IC emission on

a relatively dense photon field) seems to disfavor dominant nucleonic gamma-ray

production. In fact, it has been found that the thermal particle density at the head of

the cocoon, where bright VHE gamma-ray emission was found, is lower than that

required by hadronic models by a factor of 6 [131].

The radio-emitting region mentioned above appears to be larger (∼ 2◦× 3◦)
than theAGILE nebula, possibly indicating that IC cooling in the GeV domain is

important. However, the actual physical size of the GeV nebula could be larger

than what we are able to resolve with the available photon statistics, because of the

strong galactic gamma-ray emission affecting MeV-GeV energy bands. Instead, the

AGILE nebula is similar in shape to theHESSnebula, which may suggest that the

core of HE and VHE emission is produced in the same projected region of Vela X,

even if different electron populations are involved. Indeed, different spots of bright

radio emission [84], possibly associated to electrons injected at different stages of

pulsar evolution, are embedded within the poorly resolved HE and VHE emission

regions.

Fermi-LAT Observations

A subsequent work fromFermi-LAT [5] confirmed the emission from Vela X at

GeV energies. The gamma-ray emission detected byFermi-LAT lies within the

Vela SNR, in the2◦×3◦ area south of the pulsar known as Vela-X. TheFermi-LAT

flux is significantly spatially extended with a best-fit radius of0◦.88±0◦.12 for an

assumed radially symmetric uniform disk. The 200 MeV to 20 GeVFermi-LAT

spectrum of this source is well described by a power law with a spectral index of

2.41±0.09±0.15 and integral flux above 100 MeV of4.73±0.63±1.32×10−7

cm−2 s−1. The first errors represent the statistical error on the fit parameters, while

the second ones are the systematic uncertainties.

The Fermi-LAT spectrum and the improved flux estimates for the radio and

X-ray emission from the two components of their SED disfavors the hadronic

scenario. They require a three-component injection (one hadron and two lepton)

in this case, along with a quite high magnetic eld in the cocoon in order to suppress

IC scattering of X-ray emitting electrons from providing the dominant source of

VHE gamma rays. Their SED also strongly supports the two-component leptonic

model as predicted by [61].
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6.4.3 The PWNe as Unidentified Gamma-Ray Sources or Unresolved
Gamma-Ray Background

High-energy PWN emissions are thought to be a common phenomenon associated

with young and energetic pulsars [153] because the IC emission of these PWNe

arises mostly from scattering on CMBR and starlight fields, with no special

environmental requirements. On the other hand, PWN emissions are expected to

be much weaker than pulsed emission from the associated neutron star, especially

in the GeV domain where most of the pulsars spin-down energy is funneled. Indeed,

despite a PWN gamma-ray yield ofLPWN
γ ≈ 10−3× Ėrot , to be compared with the

typical gamma-ray pulsed luminosity ofLpulsed
γ ≈ 10−2−10−1× Ėrot , our AGILE

observations shows that104-year old PWNe can match the sensitivities of current

GeV instruments.

Because the gamma-ray luminosity of the PWN is only a small fraction of

the beamed emission from the neutron star, the PWN component is difficult to

identify in weaker gamma-ray pulsars, although it could account for a substantial

part of the observed off-pulse flux. However, if the beamed emission does not

intersect the line of sight to the observer, the PWN component, unhindered by the

stronger pulsed emission, could be detectable. Energetic pulsars (e.g.,Ėrot ≈ 1037

erg s−1) can power PWNe with gamma-ray luminosities matching the flux (∼ 10−8

to 10−7 photons cm−2 s−1; E > 100MeV) of a class of unidentifiedEGRETsources

[94], as well as a subset of those detected byAGILE andFermi-LAT [179, 213],

when placed within few kiloparsecs. The roughly isotropic emission from such

undisturbed PWNe would not yield pulsations, and, as a class, they could contribute

to the population of galactic unidentified sources still awaiting multi-wavelength

association [171, 57].
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6.5 A Flux Enhancement from the Crab Region

Figure 6.4 Hubble Space Telescope (HST) and Chandra imaging of the Crab Nebula
following the September 2010 gamma-ray flare. (Top left panel:) optical image of the inner
nebula region. The pulsar position is marked with a green arrow in all panels. White arrows
in all panels mark interesting features compared to archival data. (Top right panel:) the
same region imaged by the Chandra Observatory ACIS instrument on September 28, 2010
in the energy range 0.5-8 keV. The pulsar does not show in this map and below because of
pileup. (Bottom left panel:) zoom of the HST image showing the nebular inner region, and
the details of the anvil feature showing a ring-like structure at the base of the South-East jet
off the pulsar. Knot 1 at0′′.6 South-East from the pulsar is saturated at the pulsar position.
Terminology is from [99]. (Bottom right panel:) zoom of the Chandra image, showing the
X-ray brightening of the anvil region and the correspondence with the optical image.

The Crab Nebula is the relic of the stellar explosion recorded by Chinese

astronomers in 1054 C.E.. It is located at a distance of 2 kpc from Earth, and is

energized by the powerful Crab pulsar of spin-down luminosityLPSR= 5× 1038

erg s−1. Optical and X-ray images of the inner nebula show features such as

wisps (composing a torus-shaped structure), knots and the anvil (positioned along

the South-East jet originating from the pulsar, and aligned with its rotation axis).
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Wisps, some of the knots, and the anvil are known to brighten and fade over

weeks or months. The Crab Nebula X-ray continuum and gamma-rays up to∼ 100

MeV energies are modeled by synchrotron radiation, and emission from GeV to

TeV energies as inverse Compton radiation by accelerated electrons scattering the

Cosmic Microwave Background (CMB) and nebular photons.

Figure 6.5 Crab Nebula light curves of the total flux detected byAGILE in the energy range
100 MeV - 5 GeV during the gamma-ray flaring periods in 2007 and 2010 (units of10−8

ph cm−2 s−1). (Top panel:) the spinning AGILE photon flux light curve during the period
September 2 - October 8, 2010. Time bins are 2.5 days except near the flare peak (2-day
binning). Errors are1σ . The dotted line and band marked in grey color show the average
Crab flux and the 3σ uncertainty range. (Bottom panel:) TheAGILE light curve during the
period September 27 October 12, 2007 (1-day binning) with the satellite in pointing mode.
Errors are1σ . The dotted line and band marked in grey color show the average Crab flux
and the3σ uncertainty range.

AGILE observed the Crab Nebula several times both in pointing mode from

mid-2007/mid-2009, and in spinning mode starting in November 2009. With

the exception of a remarkable episode in October, 2007 (see below) we obtain,

during standard non-active states, an average (pulsar +nebula) flux value ofFγ =

(2.2± 0.1)× 10−6 ph cm−2 s−1 in the range 100 MeV - 5 GeV, for an average

photon indexα = 2.13± 0.07. During routine monitoring in spinning mode in

September 2010, a strong and unexpected gamma-ray flare from the direction of the

Crab Nebula was discovered [210] byAGILE above 100 MeV. The flare reached its

peak during 19-21 September 2010 with a 2-day flux ofFγ ,p1 = (7.2±1.4)×10−6

ph cm−2 s−1 (α = 2.03± 0.18) for a 4.8σ detection above the average flux. It

subsequently decayed within 2-3 days to normal average values (Figure 6.5, left

panel). This flare was independently confirmed byFermi-LAT [41], and different

groups obtained multifrequency data in the following days (see next Section).

Recognizing the importance of this event was facilitated by a previousAGILE

detection with similar characteristics (see Section 6.5.2).
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6.5.1 The Flare Across the Electromagnetic Spectrum

Optical and X-ray imaging shows no additional source in the Crab region during and

after the flare. We note that the flaring GeV spectrum is substantially harder than

the standard nebular emission [59, 27, 159]. Figure 6.4 shows the high-resolution

(arcsecond) optical and X-ray images of the nebula obtained 1-2 weeks after the

flare by the Chandra Telescope and the Hubble Space Telescope (HST). A few

nebular brightened features are noticeable in both images. The first one is the optical

and X-ray anvil feature close to the base of the pulsar jet, a primary site of shocked

particle acceleration in the inner nebula [100, 99]. Another brightened feature is at

a larger distance from the pulsar, and appears as an elongated striation in both the

HST and Chandra images.

6.5.2 Similar Episodes in the Past and Later On

AGILE detected indeed another remarkable flare from the Crab in October 2007.

This flare has similar spectral characteristics to the September 2010 episode. It

extended for∼ 2 weeks and showed an interesting time sub-structure (Figure 6.5,

bottom panel). The peak flux was reached on 7 October 2007 and the 1-day

integration value wasFγ ,p2 = (8.9± 1.1)× 10−6 ph cm−2 s−1 (α = 2.05± 0.13)

for a 6.2σ detection above the standard flux.

A Fermi-LAT reanalysis of their all-time Crab data-set provided another

detection of a flare in February 2009 [4], whenAGILE was not pointing the Anti-

Center region. The February flare had a duration of∼ 16days. The average integral

flux above 100 MeV wasFγ = 23.2±2.9×10−7 ph cm−2 s−1, corresponding to an

increase by a factor3.8±0.5 compared with the average value. This flare had a soft

spectrum with a photon index of4.3±0.3. The spectral slope was still compatible

with the average 25-month value within2σ .

Finally, in April 2011,Fermi-LAT and AGILE detected an extremely intense

and fast gamma-ray flare above 100 MeV from the Crab Nebula, the fourth of

the sequence of major gamma-ray flaring events produced by the Crab Nebula in

the period 2007/mid-2011. The April 13 - 18 event showed a very rapid flux and

spectral evolution: it reached a flux ofFγ = 30±6×10−6 ph cm−2 s−1 on a 12-

hour timescale. Strong flux and spectral variations were detected on a timescale of a

few hours during the pre- and post-flare period. Starting on April 11-12 2011 a new

gamma-ray flaring episode with substantial emission above 100 MeV was detected

by Fermi-LAT. The flare developed in the following days with substantial gamma-
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ray emission 2-3 times the normal average value (Fγ ,steady= 2.2± 0.1× 10−6 ph

cm−2 s−1) until it reached on April 16, 2011 the unprecedented high value of

Fγ = 20±4×10−6 ph cm−2 s−1 on a 24-hour timescale.

6.5.3 The Possible Origins of the Flare

Figure 6.6 SED of the Crab Nebula and the flaring gamma-ray episodes (the pulsar signal
has been subtracted). Open black symbols: Crab Nebula emission in the steady state. The
dashed curve shows our modeling of the steady state. The solid black curve shows our flare
modeling for energies above 105 eV. Dotted black curve: nebular IR emission [98]. (A) blue
filled symbols: spectralAGILEgamma-ray flare data integrated over 2 days (September 19-
21, 2010, MJD 55458.5-55460.5). Errors are1σ . Solid red and blue curves show the
2-day averaged spectral models based on synchrotron radiation from relativistice+− e−

impulsively accelerated in a shock region of sizeL ≤ 1016 cm . Dotted curves show the
spectra evolved by synchrotron cooling 3 days after the flare. (B) violet symbols: spectral
AGILE gamma-ray data during the October 7-9, 2007 flare (MJD 54380.5-54382.5). Errors
are1σ . The black, blue and red curves are those of the September 2010 flare, and are shown
here as a reference to compare the two spectra.

For both the October 2007 and September 2010 events there was no sign

of variation of the pulsar gamma-ray signal during and after these flares, as

independently confirmed for the September-2010 event by gamma-ray (22), radio

(23), and X-ray analyses. Both flares thus seem to be attributable to unpulsed

relativistic shock emission originating in the nebula. Important constraints can be

derived from the gamma-ray flare luminosity and timescale. The peak isotropic

gamma-ray luminosityLp ≈ 5× 1035 erg s−1 implies for e.g. a (3-5)% radiation

efficiency, that about (2-3)% of the total spin-down pulsar luminosity was dissipated

at the flaring site. This large value suggests that the production region was close to

the pulsar. Also the flare rise time (∼ 1 day) favors a compact emission region of
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sizeL≤ 1016 cm. The anvil feature is an excellent flare site candidate, also because

of its alignment with the relativistic pulsar jet [100, 99, 98] . This region is expected

to be dominated by the leptonic current from the polar jets [202, 25].

Gamma-ray flaring from the Crab Nebula provides a unique opportunity

to constrain particle acceleration and radiative processes in a nebular

environment. Synchrotron emission from a fresh population of shock accelerated

electrons/positrons along the pulsar polar jet can explain the flaring emission in the

range0.1− 10 GeV. Figure 6.6 shows our flare spectral data and two examples

of modeling for different assumptions on the particle populations downstream

of the shock (a pure electron-positron relativistic Maxwellian distribution, and a

distribution modified by a power-law component). Maxwellian and power-law

models predict similar synchrotron radiation fluxes in the GeV band as shown in

Figure 6.6. However, if the emission from the anvil feature is related to the gamma-

ray flaring, power-law models can explain also the X-ray emission from that region.

Fast cooling of the highest energy particles drastically decreases the GeV flux within

a few days, as observed in both the September 2010 and October 2007 flares.

These gamma-ray flares test and constrain theoretical models applicable to pure

pair plasmas or to distributions modified by the presence of ions that resonantly

accelerate pairs by magnetosonic waves [202, 25, 80]. The acceleration rate

resulting from local wave absorption at the relativistic (electron or ion) cyclotron

frequency and from hydrodynamical constraints is determined to beRacc∼ (day)−1,

implying a flare region sizeL ≈ 1016 cm for a standard downstream sound speed.

Furthermore, reconciling the synchrotron cooling timescaleτ ≈ (8× 108 sec)

B−2γ−1 (where the magnetic fieldB is in Gauss, andγ is the particle Lorentz factor)

with our observations implies, for a Lorentz factorγ ≈ (1−3)×109 of electrons

irradiating in the GeV range, a local magnetic fieldB≈ 10−3 G that is 3-10 times

the nebular average [100, 159]. Both the 2007 and 2010 gamma-ray flares have

similar spectral characteristics (Figure 6.6).

6.5.4 Spectral Evolution of the September 2010 Flare

The Crab Nebula X-ray continuum and gamma-rays up to∼ 100MeV energies are

modelled by synchrotron radiation of accelerated particles in an average nebular

magnetic field~B = 200µG [99, 59, 27, 159]. Emission from GeV to TeV energies

is interpreted as inverse Compton radiation by electrons/positrons scattering CMB

and nebular soft photons [58, 59, 27, 159].
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Three features of the September 2010 event are relevant: (1) the event develops

within 3-4 days (whereas the others last about 2 weeks); (2) the gamma-ray rise-

time appears to be remarkably short,τ ≤ 1 day [209]; (3) the flaring gamma-ray

spectrum extends well above the limit for the maximum radiated photon energy

(e.g., [15]:

Eγ,max' 9
4

α−1mec
2' 150MeV (6.1)

where α = e2/h̄c is the fine structure constant,c is the speed of light andme

the mass of the electron. The constraint arises if one assumes equality between

the accelerating electric field and the magnetic field at the acceleration site and

synchrotron cooling in the co-spatial magnetic field and it applies to the Crab

Nebula environment with the exception of this episode [209, 4]. A flare production

site in the inner nebula of sizeL ≤ 1016 cm is favored by both the peak isotropic

gamma-ray luminosityLp≈ 5×1035 erg s−1 (which implies for a (3-5)% radiation

efficiency that about (2-3)% of the total spin-down pulsar luminosity is dissipated

at the flaring site) and by the flare rise-time of∼ 1 day. We noticed that the anvil

region (knot-2 and possibly knot-1) in the Crab Nebula [197, 98] is an excellent flare

site candidate also because of its alignment with the relativistic pulsar jet [209].

The September 2010 event of the Crab Nebula lasting∼ 4 days is currently the

shortest detected gamma-ray flare. An analysis was presented by [224], showing

that the flux and spectral evolution of this event are well described by a model

characterized by very fast (shorter than∼ 1 day) particle acceleration and by

synchrotron cooling in a local magnetic field 5 - 10 times larger than the average

nebular value. Both theAGILE and Fermi-LAT gamma-ray spectral data are

consistent with each other within a 4-day timescale. This analysis of theAGILE

data on a 2-day timescale clearly showed that the emission is peaked at the photon

energyEpeak' 800 MeV, which is almost one order of magnitude larger than the

synchrotron burn-off constraint of Equation 6.1. The flaring mechanism in the Crab

Nebula is quite remarkable: it accelerates particles to the largest kinetic energies

(PeV) associable to a specific astrophysical source and does it within the shortest

time ever detected in a nebular environment.

Our results challenge the physical assumptions underlying Equation 6.1 and

in particular acceleration models based on slow processes. They show that

explanations in terms of Doppler boosting are problematic in light of the measured

spectral curvature of theAGILE data (Figure 6.6). Even though a theoretical study

of possible acceleration mechanisms consistent with the data discussed was beyond
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the scope of this work, one can briefly mention some of the difficulties. First-order

Fermi acceleration with particles gaining energy by diffusing stochastically back

and forth a shock front (e.g., [36, 35, 66]) appears to be too slow and is drastically

challenged by our findings. In particular, it is difficult to see how a diffusive shock

acceleration mechanism can violate Equation 6.1. A locally enhanced electric field

can produce a sort of runaway of kinetic energy gains with an acceleration rate larger

than the synchrotron cooling rate. However, despite some attempts and analogies

with other astrophysical contexts (e.g., pulsar magnetospheres), it is currently not

clear how this mechanism can be implemented in the Crab Nebula. MHD models

of the pulsar wind (e.g., [120, 63, 43, 121]), address the turbulence and the limit-

cycle behavior of the instabilities. These features may in principle favor substantial

local magnetic field enhancements. However, the calculated timescales of these

instabilities (e.g., [43]) are several orders of magnitudes longer than what were

detected in the Crab Nebula. Shock-drift acceleration [118] tends to occur on a

timescale shorter than diffusive processes. However, it is not clear whether the

required efficiency can be reached in the flaring Crab Nebula site, and whether

Epeak' 800MeV can be obtained. Shocks mediated by ions in the pulsar wind that

resonantly accelerate pairs by magnetosonic waves [80, 202, 25] are typically slow,

and are most likely not applicable in the X-ray and optically enhanced pulsar polar

jet regions of [209].

The challenge provided by the Crab Nebula gamma-ray flaring requires a

thorough investigation of the mechanisms leading to efficient particle acceleration

and to a natural justification ofEpeak' 800MeV. The issue will be elucidated by

future Chandra X-ray and HST optical observations of the inner Crab Nebula that

will be carried out in search of the gamma-ray flaring site.

6.5.5 Conclusions

This observation suggests that a common acceleration process produced

electron/positron energy distributions with similar physical parameters.

ConsideringAGILE exposure of the Crab Nebula, we estimate that 1-2 strong

gamma-ray flares actually occur per year. The Crab Nebula is thus not a standard

candle at GeV energies. Significant variations of the Crab Nebula high-energy flux

have also been recently reported at X-ray [234] and, possibly, at TeV [16] energies.

It remains to be established whether the gamma-ray flares that we report can be

attributed to pulsar activity injecting fresh particles in the surroundings, or to major
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plasma wave instabilities in the nebular environment.
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